• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Degradation of a broad spectrum of trace organic contaminants by anenzymatic membrane reactor: Complementary role of membrane retention and enzymatic degradation

    Author(s)
    Nguyen, Luong N
    Hai, Faisal I
    Price, William E
    Kang, Jinguo
    Leusch, Frederic DL
    Roddick, Felicity
    van de Merwe, Jason P
    Magram, Saleh F
    Nghiem, Long D
    Griffith University Author(s)
    van de Merwe, Jason P.
    Leusch, Frederic
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Laccase-catalysed degradation of 30 trace organic contaminants (TrOCs) with diverse chemical structure was investigated in an enzymatic membrane reactor (EMR) equipped with an ultrafiltration membrane. Compared to the results from batch incubation tests, the EMR could facilitate degradation of some phenolic and a number of non-phenolic TrOCs. Laccase, which was completely retained by the membrane, formed a dynamic gel layer on the membrane surface onto which TrOCs were adsorbed. EMR investigations with active and heat-inactivated laccase confirmed that the TrOCs retained by the active laccase gel layer were eventually degraded. ...
    View more >
    Laccase-catalysed degradation of 30 trace organic contaminants (TrOCs) with diverse chemical structure was investigated in an enzymatic membrane reactor (EMR) equipped with an ultrafiltration membrane. Compared to the results from batch incubation tests, the EMR could facilitate degradation of some phenolic and a number of non-phenolic TrOCs. Laccase, which was completely retained by the membrane, formed a dynamic gel layer on the membrane surface onto which TrOCs were adsorbed. EMR investigations with active and heat-inactivated laccase confirmed that the TrOCs retained by the active laccase gel layer were eventually degraded. Redox-mediator addition to the EMR significantly extended the spectrum of efficiently degraded TrOCs, but a limited improvement was observed in batch tests. The results demonstrate the important role of TrOC retention by the enzyme gel layer dynamically formed on the membrane in achieving improved degradation of TrOCs by the mediator-assisted laccase system. Despite following the same hydrogen atom transfer pathway, the mediators tested (syringaldehyde and 1-hydroxybenzotriazole) exhibited TrOC-specific degradation improvement capacity.
    View less >
    Journal Title
    International Biodeterioration and Biodegradation
    Volume
    99
    DOI
    https://doi.org/10.1016/j.ibiod.2014.12.004
    Subject
    Bioassays
    Environmental sciences
    Environmental assessment and monitoring
    Environmental management
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/134778
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander