• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Lysosomal Sialidase (Neurominidase-1) Is Targeted to Cell Surface in the Multiprotein Complex That Facilitates Elastic Fiber Assembly

    Author(s)
    Hinek, A
    Pshezhetsky, AV
    von Itzstein, M
    Starcher, B
    Griffith University Author(s)
    von Itzstein, Mark
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    We have established previously that the 67-kDa elastin-binding protein (EBP), identical to the spliced variant of ߭galactosidase, acts as a recyclable chaperone that facilitates secretion of tropoelastin. (Hinek, A., Keeley, F. W., and Callahan, J. W. (1995) Exp. Cell Res. 220, 312-324). We now demonstrate that EBP also forms a cell surface-targeted molecular complex with protective protein/cathepsin A and sialidase (neuraminidase-1), and provide evidence that this sialidase activity is a prerequisite for the subsequent release of tropoelastin. We found that treatment with sialidase inhibitors repressed assembly of elastic ...
    View more >
    We have established previously that the 67-kDa elastin-binding protein (EBP), identical to the spliced variant of ߭galactosidase, acts as a recyclable chaperone that facilitates secretion of tropoelastin. (Hinek, A., Keeley, F. W., and Callahan, J. W. (1995) Exp. Cell Res. 220, 312-324). We now demonstrate that EBP also forms a cell surface-targeted molecular complex with protective protein/cathepsin A and sialidase (neuraminidase-1), and provide evidence that this sialidase activity is a prerequisite for the subsequent release of tropoelastin. We found that treatment with sialidase inhibitors repressed assembly of elastic fibers in cultures of human skin fibroblasts, aortic smooth muscle cells, and ear cartilage chondrocytes and caused impaired elastogenesis in developing chick embryos. Fibroblasts derived from patients with congenital sialidosis (primary deficiency of neuraminidase-1) and galactosialidosis (secondary deficiency of neuraminidase-1) demonstrated impaired elastogenesis, which could be reversed after their transduction with neuraminidase-1 cDNA or after treatment with bacterial sialidase, which has a similar substrate specificity to human neuraminidase-1. We postulate that neuraminidase-1 catalyzes removal of the terminal sialic acids from carbohydrate chains of microfibrillar glycoproteins and other adjacent matrix glycoconjugates, unmasking their penultimate galactosugars. In turn, the exposed galactosugars interact with the galectin domain of EBP, thereby inducing the release of transported tropoelastin molecules and facilitating their subsequent assembly into elastic fibers.
    View less >
    Journal Title
    The Journal of Biological Chemistry
    Volume
    281
    Issue
    6
    Publisher URI
    http://www.jbc.org/
    DOI
    https://doi.org/10.1074/jbc.M508736200
    Subject
    Chemical sciences
    Biological sciences
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/13709
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander