Show simple item record

dc.contributor.authorShoushtari, Seyed Mohammad Hossein Jazayeri
dc.contributor.authorNielsen, Peter
dc.contributor.authorCartwright, Nick
dc.contributor.authorPerrochet, Pierre
dc.date.accessioned2018-03-27T01:30:39Z
dc.date.available2018-03-27T01:30:39Z
dc.date.issued2015
dc.identifier.issn0022-1694
dc.identifier.doi10.1016/j.jhydrol.2015.01.027
dc.identifier.urihttp://hdl.handle.net/10072/137115
dc.description.abstractDetailed measurements of the piezometric head from sand flume experiments of an idealised coastal aquifer forced by a simple harmonic boundary condition across a vertical boundary are presented. The measurements focus on the pore pressures very close to the interface x = 0:01 m and throw light on the details of the boundary condition, particularly with respect to meniscus suction and seepage face formation during the falling tide. Between the low and the mean water level, the response is consistent with meniscus suction free models in terms of both the vertical mean head and oscillation amplitude profiles and is consistent with the observation that this area of the interface was generally within the seepage face. Above the mean water level, the influence of meniscus formation is significant with the mean pressure head being less than that predicted by capillary free theory and oscillation amplitudes decaying faster than predicted by suction free models. The reduced hydraulic conductivity in this area due to partial drainage of pores on the falling tide also causes a delay in the response to the rising tide. The combined influence of seepage face formation, meniscus suction and reduced hydraulic conductivity generate higher harmonics with amplitudes of up to 26% of the local main harmonic. To model the influence of seepage face formation and meniscus suction a numerical solution of the Richards' equation was developed and evaluated against the data. The model-data comparison shows a good agreement with the behaviour high above the water table sensitive to the choice of moisture retention parameters.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherElsevier
dc.publisher.placeNetherlands
dc.relation.ispartofpagefrom24
dc.relation.ispartofpageto33
dc.relation.ispartofjournalJournal of Hydrology
dc.relation.ispartofvolume523
dc.subject.fieldofresearchWater Resources Engineering
dc.subject.fieldofresearchEarth Sciences not elsewhere classified
dc.subject.fieldofresearchcode090509
dc.subject.fieldofresearchcode049999
dc.titlePeriodic seepage face formation and water pressure distribution along a vertical boundary of an aquifer
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dcterms.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.versionAccepted Manuscript (AM)
gro.facultyGriffith Sciences, School of Engineering and Built Environment
gro.rights.copyright© 2015 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
gro.hasfulltextFull Text
gro.griffith.authorCartwright, Nick B.
gro.griffith.authorJazayeri, Amir


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record