• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Robust Face Recognition by Hierarchical Kernel Associative Memory Models Based on Spatial Domain Gabor Transforms

    Thumbnail
    View/Open
    40001_1.pdf (459.5Kb)
    Author(s)
    Zhang, BL
    Cerone, P
    Gao, Y
    Griffith University Author(s)
    Gao, Yongsheng
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Face recognition can be studied as an associative memory (AM) problem and kernel-based AM models have been proven efficient. In this paper, a hierarchical Kernel Associative Memory (KAM) face recognition scheme with a multiscale Gabor transform, is proposed. The pyramidal multiscale Gabor decomposition proposed by Nestares, Navarro, Portilla and Tabernero not only provides a very efficient implementation of the Gabor transform in the spatial domain, but also permits a fast reconstruction of images. In our method, face images of each person are first decomposed into their multiscale representations by a quasicomplete Gabor ...
    View more >
    Face recognition can be studied as an associative memory (AM) problem and kernel-based AM models have been proven efficient. In this paper, a hierarchical Kernel Associative Memory (KAM) face recognition scheme with a multiscale Gabor transform, is proposed. The pyramidal multiscale Gabor decomposition proposed by Nestares, Navarro, Portilla and Tabernero not only provides a very efficient implementation of the Gabor transform in the spatial domain, but also permits a fast reconstruction of images. In our method, face images of each person are first decomposed into their multiscale representations by a quasicomplete Gabor transform, which are then modelled by Kernel Associative Memories. In the recognition stage, a query face image is also represented by a Gabor multiresolution pyramid and the reconstructions from different KAM models corresponding to even Gabor channels are then simply summed to give the recall. The recognition scheme was thoroughly tested using several benchmarking face datasets, including the AR faces, UMIST faces, JAFFE faces and Yale A faces, which include different kind of face variations from occlusions, pose, expression and illumination. The experiment results show that the proposed method demonstrated strong robustness in recognizing faces under different conditions, particularly under occlusions, pose alterations and expression changes.
    View less >
    Journal Title
    Journal of Multimedia
    Volume
    1
    Issue
    4
    Copyright Statement
    © 2006 Academy Publisher. The attached file is reproduced here in accordance with the copyright policy of the publisher.
    Subject
    Computer Software
    Publication URI
    http://hdl.handle.net/10072/13775
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander