Impact of clam and mussel farming on benthic metabolism and nitrogen cycling with emphasis on nitrate reduction pathways.

View/ Open
Author(s)
Nizzoli, Daniele
Welsh, David T
Fano, Elisa Anna
Viaroli, Pierluigi
Griffith University Author(s)
Year published
2006
Metadata
Show full item recordAbstract
The influences of suspended mussel and infaunal clam cultivation on benthic metabolism and nutrient cycling were compared in Goro lagoon, Italy. Both aquaculture types stimulated benthic metabolism, with sediment oxygen demand (SOD), CO2 and ammonium effluxes of up to 14, 16 and 1.2 mmol m-2 h-1. However, whilst mussel farming preferentially stimulated anaerobic metabolism and sediment reduction, clam farming did not. The mussel ropes were also large oxygen sinks and ammonium sources, with oxygen consumption and ammonium production rates of 1.4 to 1.5 and 0.18 to 0.43 mmol kg-1 h-1. Consequently, the overall impacts of mussel ...
View more >The influences of suspended mussel and infaunal clam cultivation on benthic metabolism and nutrient cycling were compared in Goro lagoon, Italy. Both aquaculture types stimulated benthic metabolism, with sediment oxygen demand (SOD), CO2 and ammonium effluxes of up to 14, 16 and 1.2 mmol m-2 h-1. However, whilst mussel farming preferentially stimulated anaerobic metabolism and sediment reduction, clam farming did not. The mussel ropes were also large oxygen sinks and ammonium sources, with oxygen consumption and ammonium production rates of 1.4 to 1.5 and 0.18 to 0.43 mmol kg-1 h-1. Consequently, the overall impacts of mussel farming on oxygen and nutrient dynamics were much greater than those of clam farming. There were also differences in nitrate-reduction processes and the nitrate sources that fuelled them. In winter, at high water column nitrate concentrations, highest nitrate reduction rates (~320 孯l m-2 h-1) occurred at the mussel farm. Nitrate reduction was driven predominantly by water column nitrate and ~30% of nitrate reduced was recycled to ammonium via dissimilatory nitrate reduction to ammonium (DNRA). At the control and clam farm sites, nitrate reduction rates were lower (~180 孯l m-2 h-1), nitrification supplied ~30% of nitrate and denitrification was dominant. In summer under low nitrate conditions, nitrate reduction was highest (~130 孯l m-2 h-1) at the mussel farm site, but this activity was completely dependent upon water column nitrate and 95% of nitrate was reduced via DNRA. In contrast, at the clam farm station, DNRA was unimportant and nitrification was the major nitrate source for denitrification. Consequently, whilst nitrate reduction processes eliminated fixed N from the clam farm sediments via coupled nitrification-denitrification, the dominance of DNRA at the mussel farm site resulted in a net N input to the sediment compartment. These large differences in the impacts of clam and mussel farming can be explained by the fact that infaunal clams stimulate transfer of both organic matter and oxygen to the sediment, whereas suspended mussels enhance only organic matter inputs.
View less >
View more >The influences of suspended mussel and infaunal clam cultivation on benthic metabolism and nutrient cycling were compared in Goro lagoon, Italy. Both aquaculture types stimulated benthic metabolism, with sediment oxygen demand (SOD), CO2 and ammonium effluxes of up to 14, 16 and 1.2 mmol m-2 h-1. However, whilst mussel farming preferentially stimulated anaerobic metabolism and sediment reduction, clam farming did not. The mussel ropes were also large oxygen sinks and ammonium sources, with oxygen consumption and ammonium production rates of 1.4 to 1.5 and 0.18 to 0.43 mmol kg-1 h-1. Consequently, the overall impacts of mussel farming on oxygen and nutrient dynamics were much greater than those of clam farming. There were also differences in nitrate-reduction processes and the nitrate sources that fuelled them. In winter, at high water column nitrate concentrations, highest nitrate reduction rates (~320 孯l m-2 h-1) occurred at the mussel farm. Nitrate reduction was driven predominantly by water column nitrate and ~30% of nitrate reduced was recycled to ammonium via dissimilatory nitrate reduction to ammonium (DNRA). At the control and clam farm sites, nitrate reduction rates were lower (~180 孯l m-2 h-1), nitrification supplied ~30% of nitrate and denitrification was dominant. In summer under low nitrate conditions, nitrate reduction was highest (~130 孯l m-2 h-1) at the mussel farm site, but this activity was completely dependent upon water column nitrate and 95% of nitrate was reduced via DNRA. In contrast, at the clam farm station, DNRA was unimportant and nitrification was the major nitrate source for denitrification. Consequently, whilst nitrate reduction processes eliminated fixed N from the clam farm sediments via coupled nitrification-denitrification, the dominance of DNRA at the mussel farm site resulted in a net N input to the sediment compartment. These large differences in the impacts of clam and mussel farming can be explained by the fact that infaunal clams stimulate transfer of both organic matter and oxygen to the sediment, whereas suspended mussels enhance only organic matter inputs.
View less >
Journal Title
Marine Ecology Progress Series
Volume
315
Issue
JUNE
Publisher URI
Copyright Statement
© 2006 Inter Research. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Oceanography
Ecology
Zoology