• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An effective variable selection heuristic in SLS for weighted Max-2-SAT

    Author(s)
    Cai, Shaowei
    Jie, Zhong
    Su, Kaile
    Griffith University Author(s)
    Su, Kaile
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Stochastic local search (SLS) is an appealing method for solving the maximum satisfiability (Max-SAT) problem. This paper proposes a new variable selection heuristic for Max-SAT local search algorithms, which works particularly well for weighted Max-2-SAT instances. Evolving from the recent configuration checking strategy, this new heuristic works in three levels and is called CCTriplex. According to the CCTriplex heuristic, a variable that is both decreasing and configuration changed has the higher priority to be flipped than a decreasing variable, which in turn has the higher priority than a configuration changed variable. ...
    View more >
    Stochastic local search (SLS) is an appealing method for solving the maximum satisfiability (Max-SAT) problem. This paper proposes a new variable selection heuristic for Max-SAT local search algorithms, which works particularly well for weighted Max-2-SAT instances. Evolving from the recent configuration checking strategy, this new heuristic works in three levels and is called CCTriplex. According to the CCTriplex heuristic, a variable that is both decreasing and configuration changed has the higher priority to be flipped than a decreasing variable, which in turn has the higher priority than a configuration changed variable. The CCTriplex heuristic is used to develop a new SLS algorithm for weighted Max-2-SAT called CCMaxSAT. We evaluate CCMaxSAT on random benchmarks with different densities, and the hand crafted Frb benchmark, as well as weighted Max-2-SAT instances encoded from MaxCut, MaxClique and sports scheduling problems. Compared with the state-of-the-art SLS solver for weighted Max-2-SAT called ITS and the best SLS solver in Max-SAT Evaluation 2012 namely ubcsat-IRoTS, as well as the famous complete solver wMaxSATz, our algorithm CCMaxSAT shows rather good performance on all the benchmarks.
    View less >
    Journal Title
    Journal of Heuristics
    Volume
    21
    Issue
    3
    DOI
    https://doi.org/10.1007/s10732-015-9284-3
    Subject
    Applied mathematics
    Artificial intelligence not elsewhere classified
    Theory of computation
    Publication URI
    http://hdl.handle.net/10072/139996
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander