• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • More than meets the eye: Using cognitive work analysis to identify design requirements for future rail level crossing systems

    Author(s)
    M. Salmon, Paul
    Lenne, Michael G.
    Read, Gemma J.M.
    Mulvihill, Christine M.
    Cornelissen, Miranda
    Walker, Guy H.
    Young, Kristie L.
    Stevens, Nicholas
    A. Stanton, Neville
    Griffith University Author(s)
    Cornelissen, Miranda
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    An increasing intensity of operations means that the longstanding safety issue of rail level crossings is likely to become worse in the transport systems of the future. It has been suggested that the failure to prevent collisions may be, in part, due to a lack of systems thinking during design, crash analysis, and countermeasure development. This paper presents a systems analysis of current active rail level crossing systems in Victoria, Australia that was undertaken to identify design requirements to improve safety in future rail level crossing environments. Cognitive work analysis was used to analyse rail level crossing ...
    View more >
    An increasing intensity of operations means that the longstanding safety issue of rail level crossings is likely to become worse in the transport systems of the future. It has been suggested that the failure to prevent collisions may be, in part, due to a lack of systems thinking during design, crash analysis, and countermeasure development. This paper presents a systems analysis of current active rail level crossing systems in Victoria, Australia that was undertaken to identify design requirements to improve safety in future rail level crossing environments. Cognitive work analysis was used to analyse rail level crossing systems using data derived from a range of activities. Overall the analysis identified a range of instances where modification or redesign in line with systems thinking could potentially improve behaviour and safety. A notable finding is that there are opportunities for redesign outside of the physical rail level crossing infrastructure, including improved data systems, in-vehicle warnings and modifications to design processes, standards and guidelines. The implications for future rail level crossing systems are discussed.
    View less >
    Journal Title
    Applied Ergonomics
    DOI
    https://doi.org/10.1016/j.apergo.2015.06.021
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Design Practice and Management not elsewhere classified
    Human Movement and Sports Sciences
    Medical Physiology
    Design Practice and Management
    Publication URI
    http://hdl.handle.net/10072/141177
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander