• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Power Control and Monitoring of the Smart Grid with Evs

    Author(s)
    Rahman, MS
    Rafi, FHM
    Hossain, MJ
    Lu, J
    Griffith University Author(s)
    Lu, Junwei
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    The usage of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) has increased significantly in recent years due to environmental concerns and hike in the fossil fuel price. These vehicles possess dual dynamic characteristics. They act as a load while in G2V (grid-to-vehicle) mode and as a generator while in V2G (vehicle-to-grid) mode. V2G concept can improve utility grid performance with regard to efficiency, stability and reliability by offering reactive power management and active power control, tracking intermittent renewable energy sources, load balancing and shifting via valley filling support, peak ...
    View more >
    The usage of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) has increased significantly in recent years due to environmental concerns and hike in the fossil fuel price. These vehicles possess dual dynamic characteristics. They act as a load while in G2V (grid-to-vehicle) mode and as a generator while in V2G (vehicle-to-grid) mode. V2G concept can improve utility grid performance with regard to efficiency, stability and reliability by offering reactive power management and active power control, tracking intermittent renewable energy sources, load balancing and shifting via valley filling support, peak load shaving and current harmonics filtering in the output. On the other hand, G2V includes conventional and fast battery charging that can stress the grid distribution network due to high-power rating of EV batteries and by injecting harmonics. Sophisticated active and reactive power regulation as well as state-of-the-art monitoring system is required to overcome the impacts and to implement successful interfacing. This chapter discusses the impacts of G2V/V2G concepts on the smart grid active and reactive power profile and their optimum control strategies. The importance of and the technologies needed for smart monitoring system in charging/discharging mode are also reviewed. Simulation results show that controlled implementation of V2G can significantly contribute to enhancing dynamic performance and stability of the microgrid under different operating conditions.
    View less >
    Book Title
    Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid
    DOI
    https://doi.org/10.1049/PBPO079E_ch5
    Subject
    Electrical energy generation (incl. renewables, excl. photovoltaics)
    Publication URI
    http://hdl.handle.net/10072/141421
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander