• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Titania nanotubes for orchestrating osteogenesis at the bone–implant interface

    Author(s)
    Gulati, Karan
    Maher, Shaheer
    Findlay, David M
    Losic, Dusan
    Griffith University Author(s)
    Gulati, Karan
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Titanium implants can fail due to inappropriate biomechanics at the bone–implant interface that leads to suboptimal osseointegration. Titania nanotubes (TNTs) fabricated on Ti implants by the electrochemical process have emerged as a promising modification strategy to facilitate osseointegration. TNTs enable augmentation of bone cell functions at the bone–implant interface and can be tailored to incorporate multiple functionalities including the loading of active biomolecules into the nanotubes to target anabolic processes in bone conditions such as osteoporotic fractures. Advanced functions can be introduced, including ...
    View more >
    Titanium implants can fail due to inappropriate biomechanics at the bone–implant interface that leads to suboptimal osseointegration. Titania nanotubes (TNTs) fabricated on Ti implants by the electrochemical process have emerged as a promising modification strategy to facilitate osseointegration. TNTs enable augmentation of bone cell functions at the bone–implant interface and can be tailored to incorporate multiple functionalities including the loading of active biomolecules into the nanotubes to target anabolic processes in bone conditions such as osteoporotic fractures. Advanced functions can be introduced, including biopolymers, nanoparticles and electrical stimulation to release growth factors in a desired manner. This review describes the application of TNTs for enhancing osteogenesis at the bone–implant interface, as an alternative approach to systemic delivery of therapeutic agents.
    View less >
    Journal Title
    Nanomedicine
    Volume
    11
    Issue
    14
    DOI
    https://doi.org/10.2217/nnm-2016-0169
    Subject
    Physical chemistry
    Medical biotechnology
    Nanotechnology
    Nanomedicine
    Publication URI
    http://hdl.handle.net/10072/142289
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander