• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries

    Thumbnail
    View/Open
    ZhangPUB2780.pdf (1.391Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Zang, Yipeng
    Zhang, Haimin
    Zhang, Xian
    Liu, Rongrong
    Liu, Shengwen
    Wang, Guozhong
    Zhang, Yunxia
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2O3@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCl3 by a simple pyrolysis approach. Fe/Fe2O3@Fe-N-C obtained at a pyrolysis temperature of 1,000 °C (Fe/Fe2O3@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2·g−1. As an electrocatalyst, Fe/Fe2O3@Fe-N-C-1000 exhibited ...
    View more >
    Electrocatalysts with high catalytic activity and stability play a key role in promising renewable energy technologies, such as fuel cells and metal-air batteries. Here, we report the synthesis of Fe/Fe2O3 nanoparticles anchored on Fe-N-doped carbon nanosheets (Fe/Fe2O3@Fe-N-C) using shrimp shell-derived N-doped carbon nanodots as carbon and nitrogen sources in the presence of FeCl3 by a simple pyrolysis approach. Fe/Fe2O3@Fe-N-C obtained at a pyrolysis temperature of 1,000 °C (Fe/Fe2O3@Fe-N-C-1000) possessed a mesoporous structure and high surface area of 747.3 m2·g−1. As an electrocatalyst, Fe/Fe2O3@Fe-N-C-1000 exhibited bifunctional electrocatalytic activities toward the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in alkaline media, comparable to that of commercial Pt/C for ORR and RuO2 for OER, respectively. The Zn-air battery test demonstrated that Fe/Fe2O3@Fe-N-C-1000 had a superior rechargeable performance and cycling stability as an air cathode material with an open circuit voltage of 1.47 V (vs. Ag/AgCl) and a power density of 193 mW·cm−2 at a current density of 220 mA·cm−2. These performances were better than other commercial catalysts with an open circuit voltage of 1.36 V and a power density of 173 mW·cm−2 at a current density of 220 mA·cm−2 (a mixture of commercial Pt/C and RuO2 with a mass ratio of 1:1 was used for the rechargeable Zn-air battery measurements). This work will be helpful to design and develop low-cost and abundant bifunctional oxygen electrocatalysts for future metal-air batteries.
    View less >
    Journal Title
    Nano Research
    Volume
    9
    Issue
    7
    DOI
    https://doi.org/10.1007/s12274-016-1102-1
    Copyright Statement
    © 2016 Tsinghua University Press, co-published with Springer-Verlag GmbHs. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. The original publication is available at www.springerlink.com
    Subject
    Nanomaterials
    Publication URI
    http://hdl.handle.net/10072/142461
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander