• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Growth and in situ transformation of TiO2 and HTiOF3 crystals on chitosan-polyvinyl alcohol co-polymer substrates under vapor phase hydrothermal conditions

    Author(s)
    Wu, Tianxing
    Wang, Guozhong
    Zhu, Xiaoguang
    Liu, Porun
    Zhang, Xian
    Zhang, Haimin
    Zhang, Yunxia
    Zhao, Huijun
    Griffith University Author(s)
    Zhao, Huijun
    Liu, Porun
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    A chitosan-polyvinyl alcohol (CS/PVA) co-polymer substrate possessing a large number of amino and hydroxyl groups is used as a substrate to induce the direct growth and in situ sequential transformation of titanate crystals under HF vapor phase hydrothermal conditions. The process involves four distinct formation/transformation stages. HTiOF3 crystals with well-defined hexagonal shapes are formed during stage I, and are subsequently transformed into {001} faceted anatase TiO2 crystal nanosheets during stage II. Interestingly, the formed anatase TiO2 crystals are further transformed into cross-shaped and hollow squareshaped ...
    View more >
    A chitosan-polyvinyl alcohol (CS/PVA) co-polymer substrate possessing a large number of amino and hydroxyl groups is used as a substrate to induce the direct growth and in situ sequential transformation of titanate crystals under HF vapor phase hydrothermal conditions. The process involves four distinct formation/transformation stages. HTiOF3 crystals with well-defined hexagonal shapes are formed during stage I, and are subsequently transformed into {001} faceted anatase TiO2 crystal nanosheets during stage II. Interestingly, the formed anatase TiO2 crystals are further transformed into cross-shaped and hollow squareshaped HTiOF3 crystals during stages III and IV, respectively. Although TiO2 crystal phases and facet transformations under hydrothermal conditions have been previously reported, in situ crystal transformations between different titanate compounds have not been widely reported. Such crystal formation/transformations are likely due to the presence of large numbers of amino groups in the CS/PVA substrate. When celluloses possessing only hydroxyl groups are used as a substrate, the direct formation of {001} faceted TiO2 nanocrystal sheets is observed (rather than any sequential crystal transformations). This substrate organic functional group-induced crystal formation/transformation approach could be applicable to other material systems.
    View less >
    Journal Title
    Nano Research
    Volume
    9
    Issue
    3
    DOI
    https://doi.org/10.1007/s12274-015-0953-1
    Subject
    Nanomaterials
    Publication URI
    http://hdl.handle.net/10072/142462
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander