• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effects of light and nutrients on periphyton and the fatty acid composition and somatic growth of invertebrate grazers in subtropical streams

    Author(s)
    Guo, Fen
    Kainz, Martin J
    Sheldon, Fran
    Bunn, Stuart E
    Griffith University Author(s)
    Bunn, Stuart E.
    Sheldon, Fran
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Algal polyunsaturated fatty acids (PUFA), essential for somatic growth and reproduction of aquatic animals, are influenced by ambient environmental conditions, including light and nutrients. Few studies have addressed the extent to which changes in algal PUFA can influence stream herbivore PUFA profiles and the implications for stream food webs. We manipulated subtropical stream periphyton by applying two light levels (open and shaded canopy) and two nutrient regimes (ambient and enriched) to investigate the response of PUFA and somatic growth in stream herbivores. After 6 weeks, the relative content of periphyton PUFA (%) ...
    View more >
    Algal polyunsaturated fatty acids (PUFA), essential for somatic growth and reproduction of aquatic animals, are influenced by ambient environmental conditions, including light and nutrients. Few studies have addressed the extent to which changes in algal PUFA can influence stream herbivore PUFA profiles and the implications for stream food webs. We manipulated subtropical stream periphyton by applying two light levels (open and shaded canopy) and two nutrient regimes (ambient and enriched) to investigate the response of PUFA and somatic growth in stream herbivores. After 6 weeks, the relative content of periphyton PUFA (%) changed distinctly and differed among treatments. Periphyton in the control treatment with open canopy showed a decline in eicosapentaenoic acid (EPA) relative to initial conditions, whereas shading increased EPA and total highly unsaturated FA (HUFA), but decreased α-linolenic acid (ALA), linoleic acid and total C18 PUFA. The interaction of open canopy and added nutrients increased periphyton ALA compared with initial conditions, while the combined effects of shading and added nutrients led to greater total HUFA. FA similarity between stream grazers (the mayfly Austrophlebioides and caddisfly Helicopsyche) and periphyton increased with periphyton HUFA content. In addition, the growth of large instars of both grazers also increased in response to increased periphyton HUFA %. Our findings show that environmental changes, associated with riparian canopy and nutrients, can lead to changes in periphyton PUFA composition that in turn affect growth and PUFA composition in stream grazers.
    View less >
    Journal Title
    Oecologia
    Volume
    181
    Issue
    2
    DOI
    https://doi.org/10.1007/s00442-016-3573-x
    Subject
    Ecology
    Freshwater ecology
    Publication URI
    http://hdl.handle.net/10072/142493
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander