Experimental demonstration of Gaussian protocols for one-sided device-independent quantum key distribution

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Walk, Nathan
Hosseini, Sara
Geng, Jiao
Thearle, Oliver
Haw, Jing Yan
Armstrong, Seiji
Assad, Syed M
Janousek, Jiri
Ralph, Timothy C
Symul, Thomas
Wiseman, Howard M
Lam, Ping Koy
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example, in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations, which are inherently more vulnerable to hardware “hacking” attacks. The asymmetric phenomena of Einstein–Podolsky–Rosen (EPR) steering plays a key role in one-sided device-independent (1sDI) quantum key distribution (QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian ...
View more >Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example, in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations, which are inherently more vulnerable to hardware “hacking” attacks. The asymmetric phenomena of Einstein–Podolsky–Rosen (EPR) steering plays a key role in one-sided device-independent (1sDI) quantum key distribution (QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 and 3.5 km of optical fiber transmission, respectively. We also engage in detailed modeling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CV-QKD systems in a significantly more secure setting.
View less >
View more >Nonlocal correlations, a longstanding foundational topic in quantum information, have recently found application as a resource for cryptographic tasks where not all devices are trusted, for example, in settings with a highly secure central hub, such as a bank or government department, and less secure satellite stations, which are inherently more vulnerable to hardware “hacking” attacks. The asymmetric phenomena of Einstein–Podolsky–Rosen (EPR) steering plays a key role in one-sided device-independent (1sDI) quantum key distribution (QKD) protocols. In the context of continuous-variable (CV) QKD schemes utilizing Gaussian states and measurements, we identify all protocols that can be 1sDI and their maximum loss tolerance. Surprisingly, this includes a protocol that uses only coherent states. We also establish a direct link between the relevant EPR steering inequality and the secret key rate, further strengthening the relationship between these asymmetric notions of nonlocality and device independence. We experimentally implement both entanglement-based and coherent-state protocols, and measure the correlations necessary for 1sDI key distribution up to an applied loss equivalent to 7.5 and 3.5 km of optical fiber transmission, respectively. We also engage in detailed modeling to understand the limits of our current experiment and the potential for further improvements. The new protocols we uncover apply the cheap and efficient hardware of CV-QKD systems in a significantly more secure setting.
View less >
Journal Title
Optica
Volume
3
Issue
6
Copyright Statement
© 2016 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.
Subject
Atomic, molecular and optical physics
Atomic, molecular and optical physics not elsewhere classified
Communications engineering