• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Segmentation of cell nuclei in fluorescence microscopy images: An integrated framework using level set segmentation and touching-cell splitting

    Author(s)
    Gharipour, Amin
    Liew, Alan Wee-Chung
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Accurate segmentation of cells in fluorescence microscopy images plays a key role in high-throughput applications such as quantification of protein expression and the study of cell function. In this paper, an integrated framework consisting of a new level sets based segmentation algorithm and a touching-cell splitting method is proposed. For cell nuclei segmentation, a new region-based active contour model in a variational level set formulation is developed where our new level set energy functional minimizes the Bayesian classification risk. For touching-cell splitting, the touching cells are first distinguished from ...
    View more >
    Accurate segmentation of cells in fluorescence microscopy images plays a key role in high-throughput applications such as quantification of protein expression and the study of cell function. In this paper, an integrated framework consisting of a new level sets based segmentation algorithm and a touching-cell splitting method is proposed. For cell nuclei segmentation, a new region-based active contour model in a variational level set formulation is developed where our new level set energy functional minimizes the Bayesian classification risk. For touching-cell splitting, the touching cells are first distinguished from non-touching cells, and then a strategy based on the splitting area identification is proposed to obtain splitting point-pairs. To form the appropriate splitting line, the image properties from different information channels are used to define the surface manifold of the image patch around the selected splitting point-pairs and geodesic distance is used to measure the length of the shortest path on the manifold connecting the two splitting points. The performance of the proposed framework is evaluated using a large number of fluorescence microscopy images from four datasets with different cell types. A quantitative comparison is also performed with several existing segmentation approaches.
    View less >
    Journal Title
    Pattern Recognition
    Volume
    58
    DOI
    https://doi.org/10.1016/j.patcog.2016.03.030
    Subject
    Artificial intelligence
    Publication URI
    http://hdl.handle.net/10072/142513
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander