Coherent control of the dissociation probability of H2+ in ω-3ω two-color fields
Author(s)
Xu, Han
Hu, Hongtao
Tong, Xiao-Min
Liu, Peng
Li, Ruxin
Sang, Robert T
Litvinyuk, Igor V
Year published
2016
Metadata
Show full item recordAbstract
We demonstrate that the coherent control of unimolecular reactions by using a waveform-controlled laser fields can lead to a strong modulation on the yield of the reaction. By using a synthesized ω (1800-nm) and 3ω (600-nm) two-color laser field, the probability of photodissociation of H2+ can be strongly modulated by varying the relative phase between the two colors. The dissociation probability maximizes at different relative phases for protons with different kinetic energy, and such energy dependence can also be qualitatively reproduced by our simulation. We attribute the observed dissociation probability modulation to ...
View more >We demonstrate that the coherent control of unimolecular reactions by using a waveform-controlled laser fields can lead to a strong modulation on the yield of the reaction. By using a synthesized ω (1800-nm) and 3ω (600-nm) two-color laser field, the probability of photodissociation of H2+ can be strongly modulated by varying the relative phase between the two colors. The dissociation probability maximizes at different relative phases for protons with different kinetic energy, and such energy dependence can also be qualitatively reproduced by our simulation. We attribute the observed dissociation probability modulation to the interference between two different dissociation pathways which start from the same electronic states and end with the same kinetic energy.
View less >
View more >We demonstrate that the coherent control of unimolecular reactions by using a waveform-controlled laser fields can lead to a strong modulation on the yield of the reaction. By using a synthesized ω (1800-nm) and 3ω (600-nm) two-color laser field, the probability of photodissociation of H2+ can be strongly modulated by varying the relative phase between the two colors. The dissociation probability maximizes at different relative phases for protons with different kinetic energy, and such energy dependence can also be qualitatively reproduced by our simulation. We attribute the observed dissociation probability modulation to the interference between two different dissociation pathways which start from the same electronic states and end with the same kinetic energy.
View less >
Journal Title
Physical Review A - Atomic, Molecular, and Optical Physics
Volume
93
Issue
6
Subject
Other physical sciences not elsewhere classified