• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Tempo-Spatial Variations of Ambient Ozone-Mortality Associations in the USA: Results from the NMMAPS Data

    Thumbnail
    View/Open
    LiuPUB3187.pdf (1.142Mb)
    Author(s)
    Liu, Tao
    Zeng, Weilin
    Lin, Hualiang
    Rutherford, Shannon
    Xiao, Jianpeng
    Li, Xing
    Li, Zhihao
    Qian, Zhengmin
    Feng, Baixiang
    Ma, Wenjun
    Griffith University Author(s)
    Rutherford, Shannon
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of −0.07%, −0.17%, ...
    View more >
    Although the health effects of ambient ozone have been widely assessed, their tempo-spatial variations remain unclear. We selected 20 communities (ten each from southern and northern USA) based on the US National Morbidity, Mortality, and Air Pollution Study (NMMAPS) dataset. A generalized linear model (GLM) was used to estimate the season-specific association between each 10 ppb (lag0-2 day average) increment in daily 8 h maximum ozone concentration and mortality in every community. The results showed that in the southern communities, a 10 ppb increment in ozone was linked to an increment of mortality of −0.07%, −0.17%, 0.40% and 0.27% in spring, summer, autumn and winter, respectively. For the northern communities, the excess risks (ERs) were 0.74%, 1.21%, 0.52% and −0.65% in the spring, summer, autumn and winter seasons, respectively. City-specific ozone-related mortality effects were positively related with latitude, but negatively related with seasonal average temperature in the spring, summer and autumn seasons. However, a reverse relationship was found in the winter. We concluded that there were different seasonal patterns of ozone effects on mortality between southern and northern US communities. Latitude and seasonal average temperature were identified as modifiers of the ambient ozone-related mortality risks.
    View less >
    Journal Title
    International Journal of Environmental Research and Public Health
    Volume
    13
    Issue
    9
    DOI
    https://doi.org/10.3390/ijerph13090851
    Copyright Statement
    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
    Subject
    Environmental Chemistry (incl. Atmospheric Chemistry)
    Publication URI
    http://hdl.handle.net/10072/142926
    Collection
    • Journal articles

    Footer

    Social media

    • Facebook
    • Twitter
    • YouTube
    • Instagram
    • Linkedin
    First peoples of Australia
    • Aboriginal
    • Torres Strait Islander

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane
    • Australia