• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Correcting the dynamic response of a commercial esophageal balloon-catheter

    Author(s)
    Cross, Troy J
    Beck, Kenneth C
    Johnson, Bruce D
    Griffith University Author(s)
    Cross, Troy J.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    It is generally recommended that an esophageal balloon-catheter possess an adequate frequency response up to 15 Hz, such that parameters of respiratory mechanics may be quantified with precision. In our experience, however, we have observed that some commercially available systems do not display an ideal frequency response (<8-10 Hz). We therefore investigated whether the poor frequency response of a commercially available esophageal catheter may be adequately compensated using two numerical techniques: 1) an exponential model correction, and 2) Wiener deconvolution. These two numerical techniques were performed on a commercial ...
    View more >
    It is generally recommended that an esophageal balloon-catheter possess an adequate frequency response up to 15 Hz, such that parameters of respiratory mechanics may be quantified with precision. In our experience, however, we have observed that some commercially available systems do not display an ideal frequency response (<8-10 Hz). We therefore investigated whether the poor frequency response of a commercially available esophageal catheter may be adequately compensated using two numerical techniques: 1) an exponential model correction, and 2) Wiener deconvolution. These two numerical techniques were performed on a commercial balloon-catheter interfaced with 0, 1, and 2 lengths of extension tubing (90 cm each), referred to as configurations L0, L90, and L180, respectively. The frequency response of the balloon-catheter in these configurations was assessed by empirical transfer function analysis, and its “working” range was defined as the frequency beyond which more than 5% amplitude and/or phase distortion was observed. The working frequency range of the uncorrected balloon-catheter extended up to only 10 Hz for L0, and progressively worsened with additional tubing length (L90 = 3 Hz, L180 = 2 Hz). Although both numerical methods of correction adequately enhanced the working frequency range of the balloon-catheter to beyond 25 Hz for all length configurations (L0, L90, and L180), Wiener deconvolution consistently provided more accurate corrections. Our data indicate that Wiener deconvolution provides a superior correction of the balloon-catheter's dynamic response, and is relatively more robust to extensions in catheter tube length compared with the exponential correction method.
    View less >
    Journal Title
    Journal of Applied Physiology
    Volume
    121
    Issue
    2
    DOI
    https://doi.org/10.1152/japplphysiol.00155.2016
    Subject
    Biological sciences
    Biomedical and clinical sciences
    Publication URI
    http://hdl.handle.net/10072/142956
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander