• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical Modelling of Pore Pressure Accumulations in Marine Sediments around Submerged Breakwaters under Combined Wave and Current Loadings

    Author(s)
    Zhang, Y
    Jeng, D-S
    Zhao, HY
    Zhang, J-S
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    In this study, an integrated model for the wave (current)-induced seabed response around submerged breakwaters is proposed. The Reynolds-Averaged Navier-Stokes (RANS) equations and k − ε turbulence model were used for the flow field, whereas an inelastic two-dimensional seabed model was used for pore pressure accumulation in a porous seabed. Unlike previous studies, the residual soil response was considered in the present model, together with the interaction between waves and currents and the preconsolidation process. The present model was validated with previous studies for wave–current interaction model and seabed models. ...
    View more >
    In this study, an integrated model for the wave (current)-induced seabed response around submerged breakwaters is proposed. The Reynolds-Averaged Navier-Stokes (RANS) equations and k − ε turbulence model were used for the flow field, whereas an inelastic two-dimensional seabed model was used for pore pressure accumulation in a porous seabed. Unlike previous studies, the residual soil response was considered in the present model, together with the interaction between waves and currents and the preconsolidation process. The present model was validated with previous studies for wave–current interaction model and seabed models. Based on the numerical examples presented, the following conclusions were made: (1) preconsolidation because of static loading of breakwaters and static water pressures significantly affects the seabed response around the breakwaters, (2) the liquefaction depth under combined wave and current loading is less than that under wave-only loading, (3) the maximum liquefaction depth increases as the width and height of the submerged breakwater increase, and (4) liquefaction depth for the submerged, multiple breakwaters is smaller than that for a single, submerged breakwater.
    View less >
    Journal Title
    Journal of Coastal Research
    Volume
    32
    Issue
    5
    DOI
    https://doi.org/10.2112/JCOASTRES-D-14-00262.1
    Subject
    Earth sciences
    Engineering
    Other engineering not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/142965
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander