Pulpal response following photo-biomodulation with a 904-nm diode laser: a double-blind clinical study
Author(s)
Liang, Ryan
George, Roy
Walsh, Laurence J
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
The aim of this study was to evaluate pulpal responses in healthy human teeth to photo-biomodulation therapy (PBMT) with 904-nm GaAs diode laser. The study followed a double-blind split mouth design, with a randomly selected maxillary first premolar acting as a sham-irradiated control tooth, and the contralateral tooth receiving active laser treatment. Two coded but otherwise identical laser probes (Irradia™, SpectraMedics Ltd., NC, USA) were used to deliver the sham (placebo) and laser radiation, with both the operator and patient unaware of each probe’s identity. The selection of teeth for sham or laser irradiation was ...
View more >The aim of this study was to evaluate pulpal responses in healthy human teeth to photo-biomodulation therapy (PBMT) with 904-nm GaAs diode laser. The study followed a double-blind split mouth design, with a randomly selected maxillary first premolar acting as a sham-irradiated control tooth, and the contralateral tooth receiving active laser treatment. Two coded but otherwise identical laser probes (Irradia™, SpectraMedics Ltd., NC, USA) were used to deliver the sham (placebo) and laser radiation, with both the operator and patient unaware of each probe’s identity. The selection of teeth for sham or laser irradiation was randomised for each treatment. Pulpal responses were assessed using electric pulp testing (EPT), 2 min prior to exposure, and immediately after laser irradiation (60 s, 30 mW average power, 25 Hz pulse frequency, 3.6 J/cm2). Treatment effects were analysed using the Wilcoxon-signed rank test. A total of 30 participants provided written informed consent. Majority of the participants (66.7 %) demonstrated an analgesic effect following PBMT (elevated EPT scores); however, nine participants (30 %) reported the lower EPT scores than the control. Both the treatment effects (stimulation and analgesia) were significant compared to the placebo. In most individuals, PBMT of healthy teeth with a 904-nm GaAs diode laser can induce analgesia, as witnessed by elevated EPT scores. A converse effect can occur in a minority of subjects.
View less >
View more >The aim of this study was to evaluate pulpal responses in healthy human teeth to photo-biomodulation therapy (PBMT) with 904-nm GaAs diode laser. The study followed a double-blind split mouth design, with a randomly selected maxillary first premolar acting as a sham-irradiated control tooth, and the contralateral tooth receiving active laser treatment. Two coded but otherwise identical laser probes (Irradia™, SpectraMedics Ltd., NC, USA) were used to deliver the sham (placebo) and laser radiation, with both the operator and patient unaware of each probe’s identity. The selection of teeth for sham or laser irradiation was randomised for each treatment. Pulpal responses were assessed using electric pulp testing (EPT), 2 min prior to exposure, and immediately after laser irradiation (60 s, 30 mW average power, 25 Hz pulse frequency, 3.6 J/cm2). Treatment effects were analysed using the Wilcoxon-signed rank test. A total of 30 participants provided written informed consent. Majority of the participants (66.7 %) demonstrated an analgesic effect following PBMT (elevated EPT scores); however, nine participants (30 %) reported the lower EPT scores than the control. Both the treatment effects (stimulation and analgesia) were significant compared to the placebo. In most individuals, PBMT of healthy teeth with a 904-nm GaAs diode laser can induce analgesia, as witnessed by elevated EPT scores. A converse effect can occur in a minority of subjects.
View less >
Journal Title
Lasers in Medical Science
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Subject
Biomedical engineering
Biomedical engineering not elsewhere classified