• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Which are the polyphosphate accumulating organisms in full-scale activated sludge enhanced biological phosphate removal systems in Australia?

    Author(s)
    Beer, M
    Stratton, HM
    Griffiths, PC
    Seviour, RJ
    Griffith University Author(s)
    Stratton, Helen M.
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Aims: To see if the compositions of the microbial communities in full scale enhanced biological phosphorus removal activated sludge systems were the same as those from laboratory scale sequencing batch reactors fed a synthetic sewage. Methods: Biomass samples taken from nine full scale enhanced biological phosphate removal (EBPR) activated sludge plants in the eastern states of Australia were analysed for their populations of polyphosphate (polyP)-accumulating organisms (PAO) using semi-quantitative fluorescence in situ hybridization (FISH) in combination with DAPI (4'-6-diamidino-2-phenylindole) staining for polyP. Results: ...
    View more >
    Aims: To see if the compositions of the microbial communities in full scale enhanced biological phosphorus removal activated sludge systems were the same as those from laboratory scale sequencing batch reactors fed a synthetic sewage. Methods: Biomass samples taken from nine full scale enhanced biological phosphate removal (EBPR) activated sludge plants in the eastern states of Australia were analysed for their populations of polyphosphate (polyP)-accumulating organisms (PAO) using semi-quantitative fluorescence in situ hybridization (FISH) in combination with DAPI (4'-6-diamidino-2-phenylindole) staining for polyP. Results: Very few betaproteobacterial Rhodocyclus related organisms could be detected by FISH in most of the plants examined, and even where present, not all these cells even within a single cluster, stained positively for polyP with DAPI. In some plants in samples from aerobic reactors the Actinobacteria dominated populations containing polyP. Conclusions: The PAO populations in full-scale EBPR systems often differ to those seen in laboratory scale reactors fed artificial sewage, and Rhodocyclus related organisms, dominating these latter communities may not be as important in full-scale systems. Instead Actinobacteria may be the major PAO. Significance and Impact of the Study: These findings illustrate how little is still known about the microbial ecology of EBPR processes and that more emphasis should now be placed on analysis of full-scale plants if microbiological methods are to be applied to monitoring their performances.
    View less >
    Journal Title
    Journal of Applied Microbiology
    Volume
    100
    DOI
    https://doi.org/10.1111/j.1365-2672.2005.02784.x
    Publication URI
    http://hdl.handle.net/10072/14305
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander