• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A Large Margin Learning Method for Matching Images of Natural Objects with Different Dimensions

    Author(s)
    Zhou, H
    Zhou, J
    Yang, H
    Yan, C
    Bai, X
    Liu, Y
    Griffith University Author(s)
    Zhou, Jun
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Imaging devices are of increasing use in environmental research requiring an urgent need to deal with such issues as image data, feature matching over different dimensions. Among them, matching hyperspectral image with other types of images is challenging due to the high dimensional nature of hyperspectral data. This chapter addresses this problem by investigating structured support vector machines to construct and learn a graph-based model for each type of image. The graph model incorporates both low-level features and stable correspondences within images. The inherent characteristics are depicted by using a graph matching ...
    View more >
    Imaging devices are of increasing use in environmental research requiring an urgent need to deal with such issues as image data, feature matching over different dimensions. Among them, matching hyperspectral image with other types of images is challenging due to the high dimensional nature of hyperspectral data. This chapter addresses this problem by investigating structured support vector machines to construct and learn a graph-based model for each type of image. The graph model incorporates both low-level features and stable correspondences within images. The inherent characteristics are depicted by using a graph matching algorithm on extracted weighted graph models. The effectiveness of this method is demonstrated through experiments on matching hyperspectral images to RGB images, and hyperspectral images with different dimensions on images of natural objects.
    View less >
    Book Title
    Computer Vision and Pattern Recognition in Environmental Informatics
    DOI
    https://doi.org/10.4018/978-1-4666-9435-4.ch015
    Subject
    Computer vision
    Publication URI
    http://hdl.handle.net/10072/143064
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander