• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Productivity and Connectivity in Tropical Riverscapes of Northern Australia: Ecological Insights for Management

    Thumbnail
    View/Open
    BunnPUB3345.pdf (1.266Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Pettit, Neil E
    Naiman, Robert J
    Warfe, Danielle M
    Jardine, Tim D
    Douglas, Michael M
    Bunn, Stuart E
    Davies, Peter M
    Griffith University Author(s)
    Bunn, Stuart E.
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    Flow regimes are fundamental to sustaining ecological characteristics of rivers worldwide, including their associated floodplains. Recent advances in understanding tropical river–floodplain ecosystems suggest that a small set of basic ecological concepts underpins their biophysical characteristics, especially the high levels of productivity, biodiversity and natural resilience. The concepts relate to (1) river-specific flow patterns, (2) processes ‘fuelled’ by a complex of locally generated carbon and nutrients seasonally mixed with carbon and nutrients from floodplains and catchments, (3) seasonal movements of biota facilitated ...
    View more >
    Flow regimes are fundamental to sustaining ecological characteristics of rivers worldwide, including their associated floodplains. Recent advances in understanding tropical river–floodplain ecosystems suggest that a small set of basic ecological concepts underpins their biophysical characteristics, especially the high levels of productivity, biodiversity and natural resilience. The concepts relate to (1) river-specific flow patterns, (2) processes ‘fuelled’ by a complex of locally generated carbon and nutrients seasonally mixed with carbon and nutrients from floodplains and catchments, (3) seasonal movements of biota facilitated by flood regimes, (4) food webs and overall productivity sustained by hydrological connectivity, (5) fires in the wet/dry tropical floodplains and riparian zones being major consumers of carbon and a key factor in the subsequent redistribution of nutrients, and (6) river–floodplains having inherent resilience to natural variability but only limited resilience to artificial modifications. Understanding these concepts is particularly timely in anticipating the effects of impending development that may affect tropical river–floodplains at the global scale. Australia, a region encompassing some of the last relatively undisturbed tropical riverine landscapes in the world, provides a valuable case study for understanding the productivity, diversity and resilience of tropical river–floodplain systems. However, significant knowledge gaps remain. Despite substantial recent advances in understanding, present knowledge of these highly complex tropical rivers is insufficient to predict many ecological responses to either human-generated or climate-related changes. The major research challenges identified herein (for example, those related to food web structure, nutrient transfers, productivity, connectivity and resilience), if accomplished in the next decade, will offer substantial insights toward assessing and managing ecological changes associated with human alterations to rivers and their catchments.
    View less >
    Journal Title
    Ecosystems
    DOI
    https://doi.org/10.1007/s10021-016-0037-4
    Copyright Statement
    © 2017 Springer New York. This is an electronic version of an article published in Ecosystems, Volume 20, Issue 3, pp 492-514, April 2017. Ecosystems is available online at: http://link.springer.com// with the open URL of your article.
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Environmental sciences
    Other environmental sciences not elsewhere classified
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/143108
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander