• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • The Basics of Bacteriuria: Strategies of Microbes for Persistence in Urine

    Thumbnail
    View/Open
    IpePUB3375.pdf (362.9Kb)
    File version
    Version of Record (VoR)
    Author(s)
    Ipe, Deepak S
    Horton, Ella
    Ulett, Glen C
    Griffith University Author(s)
    Horton, Ella M.
    Ulett, Glen C.
    Ipe, Deepak S.
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Bacteriuria, the presence of bacteria in urine, is associated with asymptomatic, as well as symptomatic, urinary tract infection (UTI). Bacteriuria underpins some of the dynamics of microbial colonization of the urinary tract, and probably impacts the progression and persistence of infection in some individuals. Recent molecular discoveries in vitro have elucidated how some key bacterial traits can enable organisms to survive and grow in human urine as a means of microbial fitness adaptation for UTI. Several microbial characteristics that confer bacteruric potential have been identified including de novo synthesis of guanine, ...
    View more >
    Bacteriuria, the presence of bacteria in urine, is associated with asymptomatic, as well as symptomatic, urinary tract infection (UTI). Bacteriuria underpins some of the dynamics of microbial colonization of the urinary tract, and probably impacts the progression and persistence of infection in some individuals. Recent molecular discoveries in vitro have elucidated how some key bacterial traits can enable organisms to survive and grow in human urine as a means of microbial fitness adaptation for UTI. Several microbial characteristics that confer bacteruric potential have been identified including de novo synthesis of guanine, relative resistance to D-serine, and catabolism of malic acid. Microbial characteristics such as these are increasingly being defined through the use of synthetic human urine (SHU) in vitro as a model to mimic the in vivo environment that bacteria encounter in the bladder. There is considerable variation in the SHU model systems that have been used to study bacteriuria to date, and this influences the utility of these models. In this review, we discuss recent advances in our understanding of bacteruric potential with a focus on the specific mechanisms underlying traits that promote the growth of bacteria in urine. We also review the application of SHU in research studies modeling UTI and discuss the chemical makeup, and benefits and limitations that are encountered in utilizing SHU to study bacterial growth in urine in vitro.
    View less >
    Journal Title
    Frontiers in Cellular and infection Microbiology
    Volume
    6
    DOI
    https://doi.org/10.3389/fcimb.2016.00014
    Copyright Statement
    © 2016 Ipe, Horton and Ulett. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
    Subject
    Microbiology not elsewhere classified
    Biochemistry and Cell Biology
    Microbiology
    Publication URI
    http://hdl.handle.net/10072/143143
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander