• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An improved method for calculating toxicity-based pollutant loads: Part 1. Method development

    Author(s)
    Smith, Rachael
    Warne, Michael
    Mengersen, Kerrie
    Turner, Ryan
    Griffith University Author(s)
    Warne, Michael
    Turner, Ryan
    Smith, Rachael
    Year published
    2016
    Metadata
    Show full item record
    Abstract
    Pollutant loads are a means for assessing regulatory compliance and setting targets to reduce pollution entering receiving waterbodies. However, a pollutant load is often comprised of multiple chemicals, which may exert joint toxicity on biota. When the ultimate goal for assessing pollutant loads is to protect ecosystems from adverse effects of toxicants, then the total pollutant load needs to be calculated based on the principles of mixture toxicology. In this article, an improved method is proposed to convert a pollutant load to a toxicity‐based load (toxic load) using a modified toxic equivalency factor (TEF) derivation ...
    View more >
    Pollutant loads are a means for assessing regulatory compliance and setting targets to reduce pollution entering receiving waterbodies. However, a pollutant load is often comprised of multiple chemicals, which may exert joint toxicity on biota. When the ultimate goal for assessing pollutant loads is to protect ecosystems from adverse effects of toxicants, then the total pollutant load needs to be calculated based on the principles of mixture toxicology. In this article, an improved method is proposed to convert a pollutant load to a toxicity‐based load (toxic load) using a modified toxic equivalency factor (TEF) derivation method. The method uses the relative potencies (RePs) of multiple species to represent the response of the ecological community. The TEF is calculated from a percentile of a cumulative distribution function (CDF) fitted to the RePs. The improvements permit the determination of which percentile of the CDF generates the most environmentally relevant and robust toxic loads. That is, environmental relevance ensures that a reduction in the toxic load is likely to result in a corresponding improvement in ecosystem health and robustness ensures that the calculation of the toxic loads is not biased by the reference chemical used. The improved methodology will therefore ensure that correct management decisions will be made and ultimately, a reduction in the toxic load will lead to a commensurate improvement in water quality. Integr Environ Assess Manag 2017;13:746–753. © 2016 SETAC
    View less >
    Journal Title
    Integrated Environmental Assessment and Management
    DOI
    https://doi.org/10.1002/ieam.1854
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Chemical sciences
    Environmental sciences
    Other environmental sciences not elsewhere classified
    Biological sciences
    Publication URI
    http://hdl.handle.net/10072/143192
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander