• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Numerical investigations on pore-pressure response of suction anchors under cyclic tensile loadings

    Author(s)
    Shen, Kanmin
    Wang, Lizhong
    Guo, Zhen
    Jeng, Dong-sheng
    Griffith University Author(s)
    Jeng, Dong-Sheng
    Year published
    2017
    Metadata
    Show full item record
    Abstract
    The suction anchor is an effective option for the anchor foundations of floating offshore wind turbines (FOWTs). During its long-term service, in addition to the static pretension load, the suction anchor is subjected to a series of cyclic loads that are caused by waves, currents and the continuous motions of the floating structure. Thus, excess pore-pressure will accumulate within the soil around the embedded anchor, and the anchor capacity tends to be reduced. In this paper, by introducing the oscillatory and residual mechanisms, a novel numerical model is proposed to predict the instantaneous variations and accumulations ...
    View more >
    The suction anchor is an effective option for the anchor foundations of floating offshore wind turbines (FOWTs). During its long-term service, in addition to the static pretension load, the suction anchor is subjected to a series of cyclic loads that are caused by waves, currents and the continuous motions of the floating structure. Thus, excess pore-pressure will accumulate within the soil around the embedded anchor, and the anchor capacity tends to be reduced. In this paper, by introducing the oscillatory and residual mechanisms, a novel numerical model is proposed to predict the instantaneous variations and accumulations of excess pore-pressures around a suction anchor that is subjected to long-term vertical cyclic loads. The results indicate that excess pore-pressure builds up mainly in the shallow soil near the external anchor wall. As a consequence, the effective soil stress in this region decreases along with the interface friction between the external wall and the soil. Detailed parametric studies reveal that the accumulation of excess pore-pressure is obvious for a larger load magnitude and smaller load period. With a lower permeability, smaller shear modulus or smaller relative density of the seabed soil, the pore-pressure accumulation outside the anchor increases significantly.
    View less >
    Journal Title
    Engineering Geology
    DOI
    https://doi.org/10.1016/j.enggeo.2016.12.001
    Note
    This publication has been entered into Griffith Research Online as an Advanced Online Version.
    Subject
    Civil engineering
    Civil engineering not elsewhere classified
    Geomatic engineering
    Other engineering
    Publication URI
    http://hdl.handle.net/10072/143694
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander