• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Feedback cooling of atomic motion in cavity QED

    Thumbnail
    View/Open
    Jacobs63186-Accepted.pdf (2.432Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    A. Steck, Daniel
    Jacobs, Kurt
    Mabuchi, Hideo
    Habib, Salman
    Bhattacharya, Tanmoy
    Griffith University Author(s)
    Jacobs, Kurt A.
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    We consider the problem of controlling the motion of an atom trapped in an optical cavity using continuous feedback. In order to realize such a scheme experimentally, one must be able to perform state estimation of the atomic motion in real time. While in theory this estimate may be provided by a stochastic master equation describing the full dynamics of the observed system, integrating this equation in real time is impractical. Here we derive an approximate estimation equation for this purpose, and use it as a drive in a feedback algorithm designed to cool the motion of the atom. We examine the effectiveness of such a ...
    View more >
    We consider the problem of controlling the motion of an atom trapped in an optical cavity using continuous feedback. In order to realize such a scheme experimentally, one must be able to perform state estimation of the atomic motion in real time. While in theory this estimate may be provided by a stochastic master equation describing the full dynamics of the observed system, integrating this equation in real time is impractical. Here we derive an approximate estimation equation for this purpose, and use it as a drive in a feedback algorithm designed to cool the motion of the atom. We examine the effectiveness of such a procedure using full simulations of the cavity QED system, including the quantized motion of the atom in one dimension.
    View less >
    Journal Title
    Physical Review A
    Volume
    74
    DOI
    https://doi.org/10.1103/PhysRevA.74.012322
    Subject
    Mathematical Sciences
    Physical Sciences
    Chemical Sciences
    Publication URI
    http://hdl.handle.net/10072/14379
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander