Dynamic Local Search for the Maximum Clique Problem

View/ Open
Author(s)
Pullan, Wayne
H. Hoos, Holger
Griffith University Author(s)
Year published
2006
Metadata
Show full item recordAbstract
In this paper, we introduce DLS-MC, a new stochastic local search algorithm for the maximum clique problem. DLS-MC alternates between phases of iterative improvement, during which suitable vertices are added to the current clique, and plateau search, during which vertices of the current clique are swapped with vertices not contained in the current clique. The selection of vertices is solely based on vertex penalties that are dynamically adjusted during the search, and a perturbation mechanism is used to overcome search stagnation. The behaviour of DLS-MC is controlled by a single parameter, penalty delay, which controls the ...
View more >In this paper, we introduce DLS-MC, a new stochastic local search algorithm for the maximum clique problem. DLS-MC alternates between phases of iterative improvement, during which suitable vertices are added to the current clique, and plateau search, during which vertices of the current clique are swapped with vertices not contained in the current clique. The selection of vertices is solely based on vertex penalties that are dynamically adjusted during the search, and a perturbation mechanism is used to overcome search stagnation. The behaviour of DLS-MC is controlled by a single parameter, penalty delay, which controls the frequency at which vertex penalties are reduced. We show empirically that DLSMC achieves substantial performance improvements over state-of-the-art algorithms for the maximum clique problem over a large range of the commonly used DIMACS benchmark instances.
View less >
View more >In this paper, we introduce DLS-MC, a new stochastic local search algorithm for the maximum clique problem. DLS-MC alternates between phases of iterative improvement, during which suitable vertices are added to the current clique, and plateau search, during which vertices of the current clique are swapped with vertices not contained in the current clique. The selection of vertices is solely based on vertex penalties that are dynamically adjusted during the search, and a perturbation mechanism is used to overcome search stagnation. The behaviour of DLS-MC is controlled by a single parameter, penalty delay, which controls the frequency at which vertex penalties are reduced. We show empirically that DLSMC achieves substantial performance improvements over state-of-the-art algorithms for the maximum clique problem over a large range of the commonly used DIMACS benchmark instances.
View less >
Journal Title
Journal of Artificial Intelligence Research
Volume
25
Publisher URI
Copyright Statement
© 2006 A I Access Foundation, Inc. The attached file is reproduced here in accordance with the copyright policy of the publisher. Please refer to the journal's website for access to the definitive, published version.
Subject
Applied Mathematics
Artificial Intelligence and Image Processing
Cognitive Sciences