• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Finite dispersal of a separative nepheloid plume by an internal hydraulic jump in a tropical mountainous river estuary

    Author(s)
    Wu, Jiaxue
    Ametistova, Lioudmila
    Heron, Malcolm
    Lemckert, Charles J
    Kalangi, Patrice
    Griffith University Author(s)
    Lemckert, Charles J.
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    This paper investigates the dynamics of an internal hydraulic jump in a river plume and associated suspended sediment dispersal. Field investigations were undertaken into the river plume generated by the Herbert River, Australia, following a moderate flood event induced by Cyclone Fritz in 2004. The forced plume experiences an abrupt transition from supercritical to subcritical via an internal hydraulic jump, as defined by a mode-1 internal Froude number computed using the phase speeds from the Taylor- Goldstein equation. The hydraulic theory of a two-layer stratified flow was used to identify the plume shape and the mechanical ...
    View more >
    This paper investigates the dynamics of an internal hydraulic jump in a river plume and associated suspended sediment dispersal. Field investigations were undertaken into the river plume generated by the Herbert River, Australia, following a moderate flood event induced by Cyclone Fritz in 2004. The forced plume experiences an abrupt transition from supercritical to subcritical via an internal hydraulic jump, as defined by a mode-1 internal Froude number computed using the phase speeds from the Taylor- Goldstein equation. The hydraulic theory of a two-layer stratified flow was used to identify the plume shape and the mechanical energy loss within the jump. The hydraulic jump energy loss is primarily transferred to the buoyancy-driven potential energy, uplifting the river plume. Intense stratification decreases the bottom stress, damping the resuspension. Therefore, a separative nepheloid dispersal system occurs at the jump section. Both the upper and lower nepheloid flows are confined to the inner shelf, but have different dispersal behaviors and mechanisms. The upper nepheloid flow, which is primarily controlled by advection and settling, satisfies an exponential decay law of the total suspended sediment concentrations versus the offshore distance. The lower nepheloid flow dominated by deposition is detached seaward near the lift-off point of the river plume. A turbidity front associated with the jump may accumulate a large quantity of suspended sediments, enhancing sediment release from the river plume. These findings will promote in-depth understanding of both the cross-shelf sediment dispersal and muddy deposit on the shelf.
    View less >
    Journal Title
    Journal of Geophysical Research
    Volume
    111
    Publisher URI
    https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2005JC003404
    DOI
    https://doi.org/10.1029/2005JC003404
    Copyright Statement
    © 2006 American Geophysical Union. Please refer to the journal link for access to the definitive, published version.
    Subject
    Geophysics
    Oceanography
    Physical geography and environmental geoscience
    Publication URI
    http://hdl.handle.net/10072/14427
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander