• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Effect of Overlying Windrowed Harvest Residues on Soil Carbon and Nitrogen in Hoop Pine Plantations of Subtropical Australia

    Author(s)
    Blumfield, TJ
    Xu, Z
    Prasolova, NV
    Mathers, NJ
    Griffith University Author(s)
    Xu, Zhihong
    Blumfield, Tim J.
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Background, Aims and Scope. Harvest residues were formed into windrows to prevent nitrogen (N) losses through volatilisation and erosion that occurred following pile and burn operations in hoop pine (Araucaria cunninghamii Aiton ex A. Cunn.) plantations of subtropical Australia. We selected second rotation (2R) hoop pine sites where the windrows (10-15 m apart) had been formed 1, 2 and 3 years prior to sampling in order to examine soil carbon (C) and N in the areas beneath and between the windrows. Methods. We used conventional chemical methods, anaerobic incubation assay, 13C and 15N natural abundance analyses ...
    View more >
    Background, Aims and Scope. Harvest residues were formed into windrows to prevent nitrogen (N) losses through volatilisation and erosion that occurred following pile and burn operations in hoop pine (Araucaria cunninghamii Aiton ex A. Cunn.) plantations of subtropical Australia. We selected second rotation (2R) hoop pine sites where the windrows (10-15 m apart) had been formed 1, 2 and 3 years prior to sampling in order to examine soil carbon (C) and N in the areas beneath and between the windrows. Methods. We used conventional chemical methods, anaerobic incubation assay, 13C and 15N natural abundance analyses and, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Results. Percent mineralisable N (PCMN) was the only parameter in the underneath windrow position at the Year 1 site that did not show a significant difference to the rest of the positions along the transect. However, positions adjacent to windrows did have significantly greater PCMN at the Year 1 site than other positions along the transect. PCMN, total N and total C were significantly greater underneath the windrows at the Year 3 site, whilst d13C was significantly more negative in the underneath windrow positions. Discussion. PCMN was the most sensitive biological indicator of the changes occurring in the soil due to decomposition of the windrows, with the beneath-windrow position having a significantly higher PCMN than the inter-windrow position (p<0.001) at the Year 3 site. Isotopic natural abundance for both 13C and 15N was able to detect the influx of labile materials from new residues. Solid-state 13C NMR was able to detect inputs of labile C from the windrows at the Year 1 site, whilst the increase in aromatic C at the Year 3 site was indicative of the more advanced stages of windrow decomposition. Conclusions. Decomposition of windrowed residues had a beneficial effect on soil N and C pools. However, the effect remained localised after 3 years, indicating that trees needed to be planted close to the windrows to gain any benefit from residue decomposition. Recommendations and Perspectives. The use of windrows allows a clear planting area and provides a good barrier against soil erosion. However, trees can only gain access to the nutrients from the decomposing residues if they are planted close to the windrows. Limiting the width of the cleared areas to allow for only 2 planting rows will give the maximum benefit to the developing trees.
    View less >
    Journal Title
    Journal of Soils and Sediments
    Volume
    6
    Issue
    4
    Publisher URI
    http://www.springer.com/environment/soil+science/journal/11368
    DOI
    https://doi.org/10.1065/jss2006.08.180
    Subject
    Earth sciences
    Environmental sciences
    Agricultural, veterinary and food sciences
    Publication URI
    http://hdl.handle.net/10072/14441
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander