• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Asymptotics of the dispersion interaction: analytic benchmarks for van der Waals energy functionals

    Author(s)
    Dobson, JF
    White, A
    Rubio, A
    Griffith University Author(s)
    Dobson, John F.
    White, Angela
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    We show that the usual sum of R-6 contributions from elements separated by distance R can give qualitatively wrong results for the electromagnetically nonretarded van der Waals interaction between nonoverlapping bodies. This occurs for anisotropic nanostructures that have a zero electronic energy gap, such as metallic nanotubes or nanowires, and nanolayered systems including metals and graphene planes. In all these cases our analytic microscopic calculations give an interaction falling off with a power of separation different from the conventional value. We discuss implications for van der Waals energy functionals. The new ...
    View more >
    We show that the usual sum of R-6 contributions from elements separated by distance R can give qualitatively wrong results for the electromagnetically nonretarded van der Waals interaction between nonoverlapping bodies. This occurs for anisotropic nanostructures that have a zero electronic energy gap, such as metallic nanotubes or nanowires, and nanolayered systems including metals and graphene planes. In all these cases our analytic microscopic calculations give an interaction falling off with a power of separation different from the conventional value. We discuss implications for van der Waals energy functionals. The new nanotube interaction might be directly observable at submicron separations.
    View less >
    Journal Title
    Physical Review Letters
    Volume
    96
    Publisher URI
    http://prl.aps.org/
    DOI
    https://doi.org/10.1103/PhysRevLett.96.073201
    Subject
    Mathematical sciences
    Physical sciences
    Engineering
    Publication URI
    http://hdl.handle.net/10072/14468
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander