• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Relationships between flow variability and invertebrate community composition: data from four Australian dryland rivers

    Author(s)
    Sheldon, F
    Thoms, MC
    Griffith University Author(s)
    Sheldon, Fran
    Year published
    2006
    Metadata
    Show full item record
    Abstract
    Australian dryland rivers have distinctive ecologies, intimately linked to their variable flows. The contrasting states of flood and drought mean that dryland rivers fluctuate between being highly connected (during floods: low fragmentation) to being highly disconnected (during droughts: high fragmentation) with the degree of connection between waterbodies on a spatial scale and the time since last connection on a temporal scale strongly influencing community composition. Flow regulation reduces the frequency and duration of flooding, thereby decreasing flow variability and imposing stable low flow conditions and high ...
    View more >
    Australian dryland rivers have distinctive ecologies, intimately linked to their variable flows. The contrasting states of flood and drought mean that dryland rivers fluctuate between being highly connected (during floods: low fragmentation) to being highly disconnected (during droughts: high fragmentation) with the degree of connection between waterbodies on a spatial scale and the time since last connection on a temporal scale strongly influencing community composition. Flow regulation reduces the frequency and duration of flooding, thereby decreasing flow variability and imposing stable low flow conditions and high connectivity between waterbodies. Using macroinvertebrate assemblage data from four Australian dryland rivers (River Murray, Darling River, Cooper Creek and Diamantina River), we calculated various indices of flow variability from 30-year hydrographs and assessed how well long-term flow variability, and therefore variable levels of habitat connection, could explain broad patterns of macroinvertebrate assemblage composition. Where hydrological connection between sites was strong (River Murray pool sites) there was extreme similarity between assemblages at each site. Also, for sites where hydrological disconnection was extreme there was similarity between assemblages. There were strong associations between the complex measures of flow variability and the assemblage composition of the four rivers, suggesting that flow variability, and therefore, variable levels of habitat connectivity, may be strong determinants of broad-scale assemblage composition in dryland rivers.
    View less >
    Journal Title
    River research and applications
    Volume
    22
    Publisher URI
    https://onlinelibrary.wiley.com/doi/10.1002/rra.907
    DOI
    https://doi.org/10.1002/rra.907
    Copyright Statement
    © 2006 John Wiley & Sons, Ltd. Self-archiving of the author-manuscript version is not yet supported by this publisher. Please refer to the journal link for access to the definitive, published version or contact the author for more information.
    Subject
    Ecology
    Environmental engineering
    Publication URI
    http://hdl.handle.net/10072/14475
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander