Decision-tree based human activity classification algorithm using a single-channel foot mounted gyroscope

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
McCarthy, MW
James, DA
Lee, JB
Rowlands, DD
Griffith University Author(s)
Year published
2015
Metadata
Show full item recordAbstract
Wearable devices that measure and recognise human activity in real time require classification algorithms that are both fast and accurate when implemented on limited hardware. A decision-tree-based method for differentiating between individual walking, running, stair climbing and stair descent strides using a single channel of a foot-mounted gyroscope suitable for implementation on embedded hardware is presented. Temporal features unique to each activity were extracted using an initial subject group (n = 13) and a decision-tree-based classification algorithm was developed using the timing information of these features. A ...
View more >Wearable devices that measure and recognise human activity in real time require classification algorithms that are both fast and accurate when implemented on limited hardware. A decision-tree-based method for differentiating between individual walking, running, stair climbing and stair descent strides using a single channel of a foot-mounted gyroscope suitable for implementation on embedded hardware is presented. Temporal features unique to each activity were extracted using an initial subject group (n = 13) and a decision-tree-based classification algorithm was developed using the timing information of these features. A second subject group (n = 10) completed the same activities to provide data for verification of the system. Results indicate that the classifier was able to correctly match each stride to its activity with >90% accuracy. Running and walking strides in particular matched with >99% accuracy. The outcomes demonstrate that a lightweight yet robust classification system is feasible for implementation on embedded hardware for real-time daily monitoring.
View less >
View more >Wearable devices that measure and recognise human activity in real time require classification algorithms that are both fast and accurate when implemented on limited hardware. A decision-tree-based method for differentiating between individual walking, running, stair climbing and stair descent strides using a single channel of a foot-mounted gyroscope suitable for implementation on embedded hardware is presented. Temporal features unique to each activity were extracted using an initial subject group (n = 13) and a decision-tree-based classification algorithm was developed using the timing information of these features. A second subject group (n = 10) completed the same activities to provide data for verification of the system. Results indicate that the classifier was able to correctly match each stride to its activity with >90% accuracy. Running and walking strides in particular matched with >99% accuracy. The outcomes demonstrate that a lightweight yet robust classification system is feasible for implementation on embedded hardware for real-time daily monitoring.
View less >
Journal Title
Electronics Letters
Volume
51
Issue
9
Copyright Statement
© 2015 IET. This paper is a postprint of a paper submitted to and accepted for publication in Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library
Subject
Microelectronics
Communications engineering