• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Decision-tree based human activity classification algorithm using a single-channel foot mounted gyroscope

    Thumbnail
    View/Open
    104193_1.pdf (86.45Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    McCarthy, MW
    James, DA
    Lee, JB
    Rowlands, DD
    Griffith University Author(s)
    Rowlands, David D.
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Wearable devices that measure and recognise human activity in real time require classification algorithms that are both fast and accurate when implemented on limited hardware. A decision-tree-based method for differentiating between individual walking, running, stair climbing and stair descent strides using a single channel of a foot-mounted gyroscope suitable for implementation on embedded hardware is presented. Temporal features unique to each activity were extracted using an initial subject group (n = 13) and a decision-tree-based classification algorithm was developed using the timing information of these features. A ...
    View more >
    Wearable devices that measure and recognise human activity in real time require classification algorithms that are both fast and accurate when implemented on limited hardware. A decision-tree-based method for differentiating between individual walking, running, stair climbing and stair descent strides using a single channel of a foot-mounted gyroscope suitable for implementation on embedded hardware is presented. Temporal features unique to each activity were extracted using an initial subject group (n = 13) and a decision-tree-based classification algorithm was developed using the timing information of these features. A second subject group (n = 10) completed the same activities to provide data for verification of the system. Results indicate that the classifier was able to correctly match each stride to its activity with >90% accuracy. Running and walking strides in particular matched with >99% accuracy. The outcomes demonstrate that a lightweight yet robust classification system is feasible for implementation on embedded hardware for real-time daily monitoring.
    View less >
    Journal Title
    Electronics Letters
    Volume
    51
    Issue
    9
    DOI
    https://doi.org/10.1049/el.2015.0436
    Copyright Statement
    © 2015 IET. This paper is a postprint of a paper submitted to and accepted for publication in Electronics Letters and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library
    Subject
    Microelectronics
    Communications engineering
    Publication URI
    http://hdl.handle.net/10072/150928
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander