dc.contributor.author | Pozza, Nicola Dalla | |
dc.contributor.author | Wiseman, Howard M | |
dc.contributor.author | Huntington, Elanor H | |
dc.date.accessioned | 2017-09-05T00:32:00Z | |
dc.date.available | 2017-09-05T00:32:00Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1367-2630 | |
dc.identifier.doi | 10.1088/1367-2630/17/1/013047 | |
dc.identifier.uri | http://hdl.handle.net/10072/151000 | |
dc.description.abstract | The preparation stage of optical qubits is an essential task in all the experimental setups employed for the test and demonstration of quantum optics principles. We consider a deterministic protocol for the preparation of qubits as a superposition of vacuum and one photon number states, which has the advantage to reduce the amount of resources required via phase-sensitive measurements using a local oscillator ('dyne detection'). We investigate the performances of the protocol using different phase measurement schemes: homodyne, heterodyne, and adaptive dyne detection (involving a feedback loop). First, we define a suitable figure of merit for the prepared state and we obtain an analytical expression for that in terms of the phase measurement considered. Further, we study limitations that the phase measurement can exhibit, such as delay or limited resources in the feedback strategy. Finally, we evaluate the figure of merit of the protocol for different mode-shapes handily available in an experimental setup. We show that even in the presence of such limitations simple feedback algorithms can perform surprisingly well, outperforming the protocols when simple homodyne or heterodyne schemes are employed. | |
dc.description.peerreviewed | Yes | |
dc.language | English | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics Publishing | |
dc.publisher.place | United Kingdom | |
dc.relation.ispartofpagefrom | 013047-1 | |
dc.relation.ispartofpageto | 013047-16 | |
dc.relation.ispartofjournal | New Journal of Physics | |
dc.relation.ispartofvolume | 17 | |
dc.subject.fieldofresearch | Quantum Information, Computation and Communication | |
dc.subject.fieldofresearch | Quantum Optics | |
dc.subject.fieldofresearch | Physical Sciences | |
dc.subject.fieldofresearchcode | 020603 | |
dc.subject.fieldofresearchcode | 020604 | |
dc.subject.fieldofresearchcode | 02 | |
dc.title | Deterministic preparation of superpositions of vacuum plus one photon by adaptive homodyne detection: experimental considerations | |
dc.type | Journal article | |
dc.type.description | C1 - Articles | |
dc.type.code | C - Journal Articles | |
dcterms.license | http://creativecommons.org/licenses/by/3.0 | |
dc.description.version | Version of Record (VoR) | |
gro.rights.copyright | © The Author(s) 2015. Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the authors and the title of the work, journal citation and DOI. | |
gro.hasfulltext | Full Text | |
gro.griffith.author | Wiseman, Howard M. | |
gro.griffith.author | Dalla Pozza, Nicola | |