• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Book chapters
    • View Item
    • Home
    • Griffith Research Online
    • Book chapters
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Bicluster Analysis for Coherent Pattern Discovery

    Author(s)
    Liew, Alan Wee-Chung
    Gan, Xiangchao
    Law, Ngai-Fong
    Yan, Hong
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    In unsupervised data mining, one is usually interested in discovering groups of data that exhibit certain kind of coherency. A classical technique for unsupervised data partitioning is cluster analysis, where objects are sorted into groups in such a way that the degree of association between two objects is maximal if they belong to the same group and minimal otherwise. Cluster analysis has been applied to many classification problems. In (Wu, Liew, & Yan, 2004), clustering is applied to find natural groupings in the data. In (Borland, Hirschberg, & Lye, 2001), clustering is used for data reduction, where a group of similar ...
    View more >
    In unsupervised data mining, one is usually interested in discovering groups of data that exhibit certain kind of coherency. A classical technique for unsupervised data partitioning is cluster analysis, where objects are sorted into groups in such a way that the degree of association between two objects is maximal if they belong to the same group and minimal otherwise. Cluster analysis has been applied to many classification problems. In (Wu, Liew, & Yan, 2004), clustering is applied to find natural groupings in the data. In (Borland, Hirschberg, & Lye, 2001), clustering is used for data reduction, where a group of similar objects is summarized by a representative sample in the group. Recently, clustering has been applied extensively in gene expression data analysis. In gene expression data, the objects along the row dimension correspond to genes or some DNA sequence, and the attributes in the column dimension correspond to cDNA microarray experiments or time point samples. Clustering in the row direction, or gene-wise clustering, has been done, for example, on the Yeast gene expression data and human cell (Spellman, Sherlock, Zhang, et al., 1998; Eisen, Spellman, Brown, & Botstein, 1998), whereas clustering in the column direction, or sample-wise clustering, has been done, for example, on cancer type classification (Golub, Slonim, Tamayo, et al., 1999) (Klein, Tu, Stolovitzky, et al., 2001). However, in many real world data, not all attributes of an object are relevant in grouping the objects into meaningful classes. In many cases, some attributes are relevant to only some of the clusters and different clusters may have different relevant subsets of attributes. By relaxing the constraint that related objects must behave similarly across the entire set of attributes, biclustering considers only a relevant subset of attributes when looking for similarity between objects. In this article, we give an overview of the biclustering problem, discuss some common biclustering algorithms, and highlight some interesting applications of biclustering.
    View less >
    Book Title
    Encyclopaedia of Information Science and Technology
    Volume
    8
    DOI
    https://doi.org/10.4018/978-1-4666-5888-2.ch159
    Subject
    Pattern Recognition and Data Mining
    Publication URI
    http://hdl.handle.net/10072/152667
    Collection
    • Book chapters

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander