• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Structural and Solution Chemistry of gold(I) and Silver(I) complexes of bidentate pyridyl phosphines: selective antitumour agents

    Author(s)
    Berners-Price, SJ
    Bowen, RJ
    Galettis, P
    Healy, PC
    McKeage, MJ
    Griffith University Author(s)
    Healy, Peter C.
    Berners-Price, Sue J.
    Year published
    1999
    Metadata
    Show full item record
    Abstract
    The 1:2 adducts of Ag(I) and Au(I) with 1,2-bis(di-n-pyridylphosphino)ethane (dnpype) for n=2, 3 and 4 have been synthesised and solution properties characterised by multinuclear NMR spectroscopy. The complexes are hydrophilic analogs of the lipophilic Au(I) antitumour complex [Au(dppe)2]+ and the degree of hydrophilicity depends critically on the position of the N atom in the pyridyl ring. The complexes of d3pype and d4pype are simple monomeric [M(d3pype)2]+ and [M(d4pype)2]+ species which have a much higher water solubility than the 2-pyridyl complexes which crystallise in the solid state as dimeric [{M(d2pype)2}2]2+. In ...
    View more >
    The 1:2 adducts of Ag(I) and Au(I) with 1,2-bis(di-n-pyridylphosphino)ethane (dnpype) for n=2, 3 and 4 have been synthesised and solution properties characterised by multinuclear NMR spectroscopy. The complexes are hydrophilic analogs of the lipophilic Au(I) antitumour complex [Au(dppe)2]+ and the degree of hydrophilicity depends critically on the position of the N atom in the pyridyl ring. The complexes of d3pype and d4pype are simple monomeric [M(d3pype)2]+ and [M(d4pype)2]+ species which have a much higher water solubility than the 2-pyridyl complexes which crystallise in the solid state as dimeric [{M(d2pype)2}2]2+. In solution these 1:2 M:d2pype species exist as equilibrium mixtures of monomeric, dimeric and trimeric (Ag) or tetrameric (Au) clusters. The Au(I) and Ag(I)pyridyl phosphine complexes have been evaluated for antitumour activity against a panel of cultured human ovarian carcinoma cell lines. The results show both potent and selective activity for the compounds with IC50 values ranging from 0.18 to 1500 卮 There is a correlation between the degree of antitumour selectivity and the octanol/water partition coefficients with the greatest selectivity (500-fold range) found for the most hydrophilic complex [Au(d4pype)2]Cl. Clinical development of the parent compound [Au(dppe)2]+ was halted by liver toxicity and the hydrophilic pyridylphosphine analogs are significantly less toxic than [Au(dppe)2]+ when exposed to isolated rat hepatocytes. Convenient synthetic routes to the bidentate pyridyl phosphines d2pype, d3pype and d4pype are also described.
    View less >
    Journal Title
    Coordination Chemistry Reviews
    Volume
    185-186
    Publisher URI
    http://www.sciencedirect.com/science/journal/00108545
    DOI
    https://doi.org/10.1016/S0010-8545(99)00039-9
    Copyright Statement
    © 1999 Elsevier. Please refer to the journal's website for access to the definitive, published version.
    Subject
    Inorganic chemistry
    Physical chemistry
    Other chemical sciences
    Publication URI
    http://hdl.handle.net/10072/15550
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander