• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Individual muscle contributions to the swing phase of gait: an EMG-based forward dynamics modelling approach

    Author(s)
    Barrett, Rod S
    Besier, Thor F
    Lloyd, David G
    Griffith University Author(s)
    Barrett, Rod
    Lloyd, David
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    Muscle activation patterns and kinematic conditions at the beginning of the swing phase of gait were used as input to a forward dynamics simulation of the swing leg. A neuromusculoskeletal model was used to account for the non-linearity between muscle excitation and muscle force outputs. Following model tuning a close agreement between simulated and measured swing phase kinematics was obtained. Simulation results suggest that swing leg muscles play an important role in controlling the motion of the swing leg during walking, and that the effect of individual muscles is not necessarily restricted to the joints they span or ...
    View more >
    Muscle activation patterns and kinematic conditions at the beginning of the swing phase of gait were used as input to a forward dynamics simulation of the swing leg. A neuromusculoskeletal model was used to account for the non-linearity between muscle excitation and muscle force outputs. Following model tuning a close agreement between simulated and measured swing phase kinematics was obtained. Simulation results suggest that swing leg muscles play an important role in controlling the motion of the swing leg during walking, and that the effect of individual muscles is not necessarily restricted to the joints they span or their basic anatomical classifications.
    View less >
    Journal Title
    Simulation Modelling Practice and Theory
    Volume
    15
    DOI
    https://doi.org/10.1016/j.simpat.2007.07.005
    Subject
    Applied mathematics
    Theory of computation
    Mechanical engineering
    Publication URI
    http://hdl.handle.net/10072/15631
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander