Show simple item record

dc.contributor.authorD. Splinter, Kristen
dc.contributor.authorA. Holman, Robert
dc.contributor.editorJane McKee-Smith
dc.date.accessioned2018-03-23T02:57:38Z
dc.date.available2018-03-23T02:57:38Z
dc.date.issued2006
dc.identifier.doi10.1142/9789812709554_0039
dc.identifier.urihttp://hdl.handle.net/10072/158696
dc.description.abstractAs waves enter and travel through the nearshore region, they refract and shoal as a response to gradients in the bathymetry. Many algorithms using the dispersion relationship have been developed to exploit this shoaling variation in the magnitude of the wave number, k, to allow remote sensing estimation of the underlying bathymetry. However, these methods typically ignore the refractive turning of waves as an exploitable signal. A two-step algorithm is developed to estimate bathymetry gradients from gradients in directional wave information. Local wavenumber and angle are extracted from images of surface waves using Hilbert Transform techniques. Bathymetry gradients are calculated from an augmented form of the refraction equation. Synthetic testing of the model shows that under ideal conditions, the model accurately determines two-dimensional bathymetry at wavelength scales with errors on the order of 5% of the true depth. Imagery from field data collections provides challenges for accurate data extraction of wavenumber and wave direction fields. New methods for preprocessing images using standard deviation and wavenumber filters are employed. Data extraction methods using wavelength scale least-squares fits to wrapped phase are developed and tested and show promise at this stage of the work.
dc.description.peerreviewedYes
dc.languageEnglish
dc.publisherWorld Scientific Publishing Co Pte Ltd
dc.publisher.placeUnited States
dc.relation.ispartofconferencename30th International Conference on Coastal Engineering
dc.relation.ispartofconferencetitleProceedings of the 30th International Conference : Coastal Engineering 2006
dc.relation.ispartofdatefrom2006-09-03
dc.relation.ispartofdateto2006-09-08
dc.relation.ispartoflocationSan Diego, CA, USA
dc.subject.fieldofresearchCivil Engineering not elsewhere classified
dc.subject.fieldofresearchImage Processing
dc.subject.fieldofresearchcode090599
dc.subject.fieldofresearchcode080106
dc.titleBathymetric Estimation Based on Wave Refraction Patterns
dc.typeConference output
dc.type.descriptionE1 - Conferences
dc.type.codeE - Conference Publications
gro.hasfulltextNo Full Text
gro.griffith.authorSplinter, Kristen


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

  • Conference outputs
    Contains papers delivered by Griffith authors at national and international conferences.

Show simple item record