• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A 3D Object Encryption Scheme Which Maintains Dimensional and Spatial Stability

    Thumbnail
    View/Open
    MuthukkumarasamyPUB1.pdf (1.145Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Jolfaei, Alireza
    Wu, Xin-Wen
    Muthukkumarasamy, Vallipuram
    Griffith University Author(s)
    Muthukkumarasamy, Vallipuram
    Wu, Xin-Wen
    Jolfaei, Alireza
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Due to widespread applications of three-dimensional (3D) vision technology, the research into 3D object protection is primarily important. To maintain confidentiality, encryption of 3D objects is essential. However, the requirements and limitations imposed by 3D objects indicate the impropriety of conventional cryptosystems for 3D object encryption. This suggests the necessity of designing new ciphers. In addition, the study of prior works indicates that the majority of problems encountered with encrypting 3D objects are about point cloud protection, dimensional and spatial stability, and robustness against surface reconstruction ...
    View more >
    Due to widespread applications of three-dimensional (3D) vision technology, the research into 3D object protection is primarily important. To maintain confidentiality, encryption of 3D objects is essential. However, the requirements and limitations imposed by 3D objects indicate the impropriety of conventional cryptosystems for 3D object encryption. This suggests the necessity of designing new ciphers. In addition, the study of prior works indicates that the majority of problems encountered with encrypting 3D objects are about point cloud protection, dimensional and spatial stability, and robustness against surface reconstruction attacks. To address these problems, this paper proposes a 3D object encryption scheme, based on a series of random permutations and rotations, which deform the geometry of the point cloud. Since the inverse of a permutation and a rotation matrix is its transpose, the decryption implementation is very efficient. Our statistical analyses show that within the cipher point cloud, points are randomly distributed. Furthermore, the proposed cipher leaks no information regarding the geometric structure of the plain point cloud, and is also highly sensitive to the changes of the plaintext and secret key. The theoretical and experimental analyses demonstrate the security, effectiveness and robustness of the proposed cipher against surface reconstruction attacks.
    View less >
    Journal Title
    IEEE Transactions on Information Forensics and Security
    Volume
    10
    Issue
    2
    DOI
    https://doi.org/10.1109/TIFS.2014.2378146
    Copyright Statement
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
    Subject
    Information and computing sciences
    Coding, information theory and compression
    Engineering
    Publication URI
    http://hdl.handle.net/10072/162107
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander