• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Soft clay foundation improvement with drainage and geo-inclusions, with special reference to the performance of embankments and transportation systems

    Thumbnail
    View/Open
    47209_1.pdf (560.5Kb)
    Author(s)
    Indraratna, Buddhima
    Rujikiatkamjorn, Cholachat
    Wijeyakulasuriya, Vasantha
    Balasubramaniam, Bala
    Griffith University Author(s)
    Balasubramaniam, Bala B.
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    In this paper, the geotechnical aspects of soft clay improvement using prefabricated vertical drains (PVDs) with special reference to embankments will be demonstrated. The Cavity Expansion Theory is employed to predict the smear zone caused by the installation of mandrel driven vertical drains. Analytical and Numerical analyses adopting the equivalent plane strain solution are conducted to predict the excess pore pressures, lateral and vertical displacements. The advantages and limitations of vacuum application through vertical drains avoiding the need for high surcharge embankments are discussed using the proposed ...
    View more >
    In this paper, the geotechnical aspects of soft clay improvement using prefabricated vertical drains (PVDs) with special reference to embankments will be demonstrated. The Cavity Expansion Theory is employed to predict the smear zone caused by the installation of mandrel driven vertical drains. Analytical and Numerical analyses adopting the equivalent plane strain solution are conducted to predict the excess pore pressures, lateral and vertical displacements. The advantages and limitations of vacuum application through vertical drains avoiding the need for high surcharge embankments are discussed using the proposed solutions. A few selected case histories are discussed and analyzed, including the site of the 2nd Bangkok International Airport, the coastal stretch of Muar Clay Plains in Malaysia and the Sunshine embankment, Australia. The predictions are compared with the available field data, verifying that the equivalent plane strain model can be used confidently with acceptable accuracy. Cyclic loading of PVDs is also examined in the laboratory in a manner appropriate for railway environments. It is shown that short PVDs can dissipate excess pore pressure as fast as they are built up under repeated loading conditions. Some selected on-ground experience of the first Author through the Ministry of Science and National Science Foundation during post-tsunami reconstruction efforts is described with specific reference to appropriate ground improvement requirements.
    View less >
    Conference Title
    Proceedings of the Sri Lankan Geotechnical Society's First International Conference on Soil & Rock Engineering
    Publisher URI
    http://www.issmge.org/
    http://addon.webforum.com/issmge/view.asp?EventID=356&Lang=
    Copyright Statement
    © 2007 Kulatilake & Associates. The attached file is posted here with permission of the copyright owners for your personal use only. No further distribution permitted. Use hypertext link to access the conference's webpage.
    Publication URI
    http://hdl.handle.net/10072/17057
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander