• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    • Home
    • Griffith Research Online
    • Conference outputs
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Information-based Color Feature Representation for Image Classification

    Thumbnail
    View/Open
    47662_1.pdf (266.6Kb)
    Author(s)
    Wang, SL
    Liew, AWC
    Griffith University Author(s)
    Liew, Alan Wee-Chung
    Year published
    2007
    Metadata
    Show full item record
    Abstract
    For the image classification task, the color histogram is widely used as an important color feature indicating the content of the image. However, the high-resolution color histograms are usually of high dimension and contain much redundant information which does not relate to the image content, while the low-resolution histograms cannot provide adequate discriminative information for image classification. In this paper, a new color feature representation is proposed which not only takes the correlation among neighbouring components of the conventional color histogram into account but removes the redundant information as well. ...
    View more >
    For the image classification task, the color histogram is widely used as an important color feature indicating the content of the image. However, the high-resolution color histograms are usually of high dimension and contain much redundant information which does not relate to the image content, while the low-resolution histograms cannot provide adequate discriminative information for image classification. In this paper, a new color feature representation is proposed which not only takes the correlation among neighbouring components of the conventional color histogram into account but removes the redundant information as well. A high-resolution, uniform quantized color histogram is first obtained from the image. Then the redundant bins are removed and some neighbouring bins are combined together to generate a new feature component to maximize the discriminative ability. The mutual information is adopted to evaluate the discriminative power of a specific feature set and an iterative algorithm is performed to derive the histogram quantization and their corresponding feature generation. To illustrate the effectiveness of the proposed feature representation, an application of detecting adult images, i.e., image classification between erotic and benign images, is carried out. Two widely used classification techniques, SVM and Adaboost, are employed as the classifier. Experimental results show the superior performance of our color representation compared with the conventional color histogram in image classification
    View less >
    Conference Title
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7
    Volume
    6
    DOI
    https://doi.org/10.1109/ICIP.2007.4379594
    Copyright Statement
    © 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
    Publication URI
    http://hdl.handle.net/10072/17068
    Collection
    • Conference outputs

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander