Eukaryotic promoter prediction based on relative entropy and positional information
Author(s)
Wu, Shuanhu
Xie, Xudong
Liew, Alan Wee-Chung
Yan, Hong
Griffith University Author(s)
Year published
2007
Metadata
Show full item recordAbstract
The eukaryotic promoter prediction is one of the most important problems in DNA sequence analysis, but also a very difficult one. Although a number of algorithms have been proposed, their performances are still limited by low sensitivities and high false positives. We present a method for improving the performance of promoter regions prediction. We focus on the selection of most effective features for different functional regions in DNA sequences. Our feature selection algorithm is based on relative entropy or Kullback-Leibler divergence, and a system combined with position-specific information for promoter regions prediction ...
View more >The eukaryotic promoter prediction is one of the most important problems in DNA sequence analysis, but also a very difficult one. Although a number of algorithms have been proposed, their performances are still limited by low sensitivities and high false positives. We present a method for improving the performance of promoter regions prediction. We focus on the selection of most effective features for different functional regions in DNA sequences. Our feature selection algorithm is based on relative entropy or Kullback-Leibler divergence, and a system combined with position-specific information for promoter regions prediction is developed. The results of testing on large genomic sequences and comparisons with the PromoterInspector and Dragon Promoter Finder show that our algorithm is efficient with higher sensitivity and specificity in predicting promoter regions.
View less >
View more >The eukaryotic promoter prediction is one of the most important problems in DNA sequence analysis, but also a very difficult one. Although a number of algorithms have been proposed, their performances are still limited by low sensitivities and high false positives. We present a method for improving the performance of promoter regions prediction. We focus on the selection of most effective features for different functional regions in DNA sequences. Our feature selection algorithm is based on relative entropy or Kullback-Leibler divergence, and a system combined with position-specific information for promoter regions prediction is developed. The results of testing on large genomic sequences and comparisons with the PromoterInspector and Dragon Promoter Finder show that our algorithm is efficient with higher sensitivity and specificity in predicting promoter regions.
View less >
Journal Title
Physical Review E (Statistical, Nonlinear, and Soft Matter Physics)
Volume
75
Issue
4
Publisher URI
Subject
Mathematical sciences
Physical sciences
Engineering