• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • A conductive interwoven bamboo carbon fiber membrane for Li– S batteries

    Thumbnail
    View/Open
    GuPUB1.pdf (1.657Mb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Gu, Xingxing
    Lai, Chao
    Liu, Fei
    Yang, Wenlong
    Hou, Yanglong
    Zhang, Shanqing
    Griffith University Author(s)
    Zhang, Shanqing
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Natural bamboo, as a sustainable precursor, is used to prepare porous bamboo carbon fibers (BCFs) that are subsequently interwoven into a BCF membrane (BCFM) as a captor interlayer for the lithium polysulfide intermediates between the sulfur cathode and the separator in Li-S batteries. On one hand, the interwoven BCFs offer efficient conductive networks. On the other hand, the pores of the BCFM facilitate fast mass transport of the electrolyte and Li ions and accommodate severe volume changes of the sulfur cathode during charge/discharge processes. Furthermore abundant macro/microporous structures of BCFs provide substantial ...
    View more >
    Natural bamboo, as a sustainable precursor, is used to prepare porous bamboo carbon fibers (BCFs) that are subsequently interwoven into a BCF membrane (BCFM) as a captor interlayer for the lithium polysulfide intermediates between the sulfur cathode and the separator in Li-S batteries. On one hand, the interwoven BCFs offer efficient conductive networks. On the other hand, the pores of the BCFM facilitate fast mass transport of the electrolyte and Li ions and accommodate severe volume changes of the sulfur cathode during charge/discharge processes. Furthermore abundant macro/microporous structures of BCFs provide substantial adsorption capability to remarkably suppress the formation of the Li2S2/Li2S layer on the cathode and extend the lifetime of the electrode by successfully confining sulfur within the carbon networks. Consequently, Li-S batteries with the BCFM deliver excellent electrochemical performances with a high coulombic efficiency ( ca. 98%), low capacity fade at only 0.11% per cycle, and long-term cyclability over 300 cycles at a high charge/discharge rate of 1 C. This green, low cost BCFM can provide an attractive alternative for large-scale commercialization of Li-S batteries.
    View less >
    Journal Title
    Journal of Materials Chemistry A
    Volume
    3
    Issue
    18
    DOI
    https://doi.org/10.1039/c5ta00681c
    Copyright Statement
    © 2015 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
    Subject
    Macromolecular and materials chemistry
    Electrochemistry
    Materials engineering
    Publication URI
    http://hdl.handle.net/10072/170892
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander