• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • An effective microplate method (Biolog MT2) for screening native lignocellulosic-straw-degrading bacteria

    Thumbnail
    View/Open
    SmithPUB1107.pdf (741.7Kb)
    File version
    Accepted Manuscript (AM)
    Author(s)
    Taha, Mohamed
    Kadali, Krishna K
    AL-Hothaly, Khalid
    Smith, Andrew T
    Ball, Andrew S
    Adetutu, Eric M
    Griffith University Author(s)
    Smith, Andrew T.
    Year published
    2015
    Metadata
    Show full item record
    Abstract
    Lignocellulosic wastes such as straw are attractive resources for biofuel production when subjected to biological treatment (hydrolysis). However, their complex lignocellulosic structure can hinder saccharification. The urgent need for microbial groups with high levels of straw saccharifying activities is therefore a key step in the bioconversion of lignocellulosic straw into fermentable monosaccharides. Existing traditional methods of qualitative and quantitative screening of lignocellulolytic microbial isolates are costly, time consuming and largely not environmentally friendly. In this study, a Biolog (MT2) microplate-based ...
    View more >
    Lignocellulosic wastes such as straw are attractive resources for biofuel production when subjected to biological treatment (hydrolysis). However, their complex lignocellulosic structure can hinder saccharification. The urgent need for microbial groups with high levels of straw saccharifying activities is therefore a key step in the bioconversion of lignocellulosic straw into fermentable monosaccharides. Existing traditional methods of qualitative and quantitative screening of lignocellulolytic microbial isolates are costly, time consuming and largely not environmentally friendly. In this study, a Biolog (MT2) microplate-based assay was evaluated for potential use as an alternative screening method. This was carried out using three commercially available substrates (cellulose, xylan and lignin) and four native lignocellulosic straws (wheat, rice, sugarcane, and pea ball-milled straws). Selected bacterial isolates from soil, compost and straws were screened quantitatively using both traditional crude enzyme and Biolog (MT2) microplate methods. Positive correlations (R 2 values up to 0.86) between Biolog and the traditional enzyme methodologies were observed with respect to these isolates and their lignocellulosic activities. Quantitative assays were less labor intensive and faster (3–7 days) in Biolog microplates than in traditional assays which lasted for 12–15 days. Ball-milled rice and sugarcane straws were bio-converted to monosaccharaides more readily than wheat and pea straws and the commercially available substrates (cellulose, xylan and lignin). Environmental scanning electron microscopy (ESEM) analysis of ball-milled rice and sugarcane straws suggested that this was due to their higher silica content. Overall, the Biolog (MT2) microplate system was shown to be an effective, time saving and inexpensive alternative method for the screening of both lignocellulose-degrading bacteria and different substrates for saccharification.
    View less >
    Journal Title
    Annals of Microbiology
    Volume
    65
    Issue
    4
    DOI
    https://doi.org/10.1007/s13213-015-1044-y
    Copyright Statement
    © 2015 Springer Berlin / Heidelberg. This is an electronic version of an article published in Annals of Microbiology, December 2015, Volume 65, Issue 4, Annals of Microbiology is available online at: http://link.springer.com/ with the open URL of your article.
    Subject
    Microbiology
    Microbiology not elsewhere classified
    Publication URI
    http://hdl.handle.net/10072/171969
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander