Show simple item record

dc.contributor.authorWalden, Patricia M
dc.contributor.authorHeras, Begona
dc.contributor.authorChen, Kai-En
dc.contributor.authorHalili, Maria A
dc.contributor.authorRimmer, Kieran
dc.contributor.authorSharma, Pooja
dc.contributor.authorScanlon, Martin J
dc.contributor.authorMartin, Jennifer L
dc.date.accessioned2018-10-05T01:31:08Z
dc.date.available2018-10-05T01:31:08Z
dc.date.issued2012
dc.identifier.issn2059-7983
dc.identifier.doi10.1107/S0907444912026388
dc.identifier.urihttp://hdl.handle.net/10072/171982
dc.description.abstractThe enzyme TcpG is a periplasmic protein produced by the Gram-negative pathogen Vibrio cholerae. TcpG is essential for the production of ToxR-regulated proteins, including virulence-factor pilus proteins and cholera toxin, and is therefore a target for the development of a new class of anti-virulence drugs. Here, the 1.2 Å resolution crystal structure of TcpG is reported using a cryocooled crystal. This structure is compared with a previous crystal structure determined at 2.1 Å resolution from data measured at room temperature. The new crystal structure is the first DsbA crystal structure to be solved at a sufficiently high resolution to allow the inclusion of refined H atoms in the model. The redox properties of TcpG are also reported, allowing comparison of its oxidoreductase activity with those of other DSB proteins. One of the defining features of the Escherichia coli DsbA enzyme is its destabilizing disulfide, and this is also present in TcpG. The data presented here provide new insights into the structure and redox properties of this enzyme, showing that the binding mode identified between E. coli DsbB and DsbA is likely to be conserved in TcpG and that the [beta]5-[alpha]7 loop near the proposed DsbB binding site is flexible, and suggesting that the tense oxidized conformation of TcpG may be the consequence of a short contact at the active site that is induced by disulfide formation and is relieved by reduction.
dc.description.peerreviewedYes
dc.languageEnglish
dc.language.isoeng
dc.publisherWiley-Blackwell Munksgaard
dc.relation.ispartofpagefrom1290
dc.relation.ispartofpageto1302
dc.relation.ispartofissue10
dc.relation.ispartofjournalActa Crystallographica Section D: Biological Crystallography
dc.relation.ispartofvolumeD68
dc.subject.fieldofresearchMedicinal and biomolecular chemistry not elsewhere classified
dc.subject.fieldofresearchcode340499
dc.titleThe 1.2 Å resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin production
dc.typeJournal article
dc.type.descriptionC1 - Articles
dc.type.codeC - Journal Articles
dc.description.versionVersion of Record (VoR)
gro.rights.copyright© 2012 International Union of Crystallography. This is the Authorised Electronic Reprint version of the following article: The 1.2 A˚ resolution crystal structure of TcpG, the Vibrio cholerae DsbA disulfide-forming protein required for pilus and cholera-toxin production, Acta Crystallographica Section D, 68(10),1290-1302, 2012 which has been published in final form at DOI:10.1107/S0907444912026388
gro.hasfulltextFull Text
gro.griffith.authorMartin, Jennifer


Files in this item

This item appears in the following Collection(s)

  • Journal articles
    Contains articles published by Griffith authors in scholarly journals.

Show simple item record