Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry: environment stability and activation by simple vacuum oven desiccation

View/ Open
File version
Accepted Manuscript (AM)
Author(s)
Tsao, Chia-Wen
Lin, Yuan-Jing
Chen, Pi-Yu
Yang, Yu-Liang
Tan, Say Hwa
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an emerging matrix-free, highly sensitive MS analysis method. An important challenge in using nanoscale silicon SALDI-MS analysis is the aging and stability of silicon after storage in various environments. No proper nanoscale silicon SALDI-MS activation procedure has been reported to solve this issue. This study investigated the sensitivity, wettability, and surface oxidation behavior of nanoscale silicon surface SALDI-MS in a room, an inert gas atmosphere, and a vacuum environment. A simple vacuum oven desiccation was proposed ...
View more >Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an emerging matrix-free, highly sensitive MS analysis method. An important challenge in using nanoscale silicon SALDI-MS analysis is the aging and stability of silicon after storage in various environments. No proper nanoscale silicon SALDI-MS activation procedure has been reported to solve this issue. This study investigated the sensitivity, wettability, and surface oxidation behavior of nanoscale silicon surface SALDI-MS in a room, an inert gas atmosphere, and a vacuum environment. A simple vacuum oven desiccation was proposed to activate the SALDI-MS surface, and the limit of detection was further enhanced 1000 times to a 500 attomole level using this approach. The long-term stability and desorption/ionization mechanism were also investigated.
View less >
View more >Nanoscale silicon surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) is an emerging matrix-free, highly sensitive MS analysis method. An important challenge in using nanoscale silicon SALDI-MS analysis is the aging and stability of silicon after storage in various environments. No proper nanoscale silicon SALDI-MS activation procedure has been reported to solve this issue. This study investigated the sensitivity, wettability, and surface oxidation behavior of nanoscale silicon surface SALDI-MS in a room, an inert gas atmosphere, and a vacuum environment. A simple vacuum oven desiccation was proposed to activate the SALDI-MS surface, and the limit of detection was further enhanced 1000 times to a 500 attomole level using this approach. The long-term stability and desorption/ionization mechanism were also investigated.
View less >
Journal Title
Analyst
Volume
141
Issue
16
Copyright Statement
© 2016 Royal Society of Chemistry. This is the author-manuscript version of this paper. Reproduced in accordance with the copyright policy of the publisher. Please refer to the journal website for access to the definitive, published version.
Subject
Analytical chemistry
Analytical chemistry not elsewhere classified
Other chemical sciences