• myGriffith
    • Staff portal
    • Contact Us⌄
      • Future student enquiries 1800 677 728
      • Current student enquiries 1800 154 055
      • International enquiries +61 7 3735 6425
      • General enquiries 07 3735 7111
      • Online enquiries
      • Staff phonebook
    View Item 
    •   Home
    • Griffith Research Online
    • Journal articles
    • View Item
    • Home
    • Griffith Research Online
    • Journal articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

  • All of Griffith Research Online
    • Communities & Collections
    • Authors
    • By Issue Date
    • Titles
  • This Collection
    • Authors
    • By Issue Date
    • Titles
  • Statistics

  • Most Popular Items
  • Statistics by Country
  • Most Popular Authors
  • Support

  • Contact us
  • FAQs
  • Admin login

  • Login
  • Gas sensing properties of CuO nanorods synthesized by a microwave-assisted hydrothermal method

    Author(s)
    Yang, Chao
    Su, Xintai
    Xiao, Feng
    Jian, Jikang
    Wang, Jide
    Griffith University Author(s)
    Su, Xintai
    Year published
    2011
    Metadata
    Show full item record
    Abstract
    P-type CuO nanorods with the breadth of 15–20 nm and the length of 60–80 nm, have been synthesized using a microwave-assisted hydrothermal (MH) method. The band gap of CuO nanorods was calculated to be 2.75 eV based on the UV–vis absorption spectrum of the product. The gas sensing property of the CuO nanorods to several organic vapors was tested in temperatures ranging from 160 °C to 300 °C. The response of the CuO sensor to ethanol (1000 ppm) was 9.8 at the working temperature of 210 °C. The response time and the recovery time were within the range of 13–42 s and 17–51 s, respectively. Further measurements exhibited stronger ...
    View more >
    P-type CuO nanorods with the breadth of 15–20 nm and the length of 60–80 nm, have been synthesized using a microwave-assisted hydrothermal (MH) method. The band gap of CuO nanorods was calculated to be 2.75 eV based on the UV–vis absorption spectrum of the product. The gas sensing property of the CuO nanorods to several organic vapors was tested in temperatures ranging from 160 °C to 300 °C. The response of the CuO sensor to ethanol (1000 ppm) was 9.8 at the working temperature of 210 °C. The response time and the recovery time were within the range of 13–42 s and 17–51 s, respectively. Further measurements exhibited stronger response to ethanol than to other target gases. The enhanced gas sensing performance of the sensor to ethanol may be attributed to the small size of the CuO particles.
    View less >
    Journal Title
    Sensors and Actuators, B: Chemical
    Volume
    158
    Issue
    1
    DOI
    https://doi.org/10.1016/j.snb.2011.06.024
    Subject
    Materials Engineering not elsewhere classified
    Optical Physics
    Analytical Chemistry
    Materials Engineering
    Publication URI
    http://hdl.handle.net/10072/172121
    Collection
    • Journal articles

    Footer

    Disclaimer

    • Privacy policy
    • Copyright matters
    • CRICOS Provider - 00233E
    • TEQSA: PRV12076

    Tagline

    • Gold Coast
    • Logan
    • Brisbane - Queensland, Australia
    First Peoples of Australia
    • Aboriginal
    • Torres Strait Islander