Automatic segmentation of raw LIDAR data for extraction of building roofs

View/ Open
File version
Version of Record (VoR)
Author(s)
Awrangjeb, Mohammad
Fraser, Clive S
Griffith University Author(s)
Year published
2014
Metadata
Show full item recordAbstract
Automatic extraction of building roofs from remote sensing data is important for many applications, including 3D city modeling. This paper proposes a new method for automatic segmentation of raw LIDAR (light detection and ranging) data. Using the ground height from a DEM (digital elevation model), the raw LIDAR points are separated into two groups. The first group contains the ground points that form a “building mask”. The second group contains non-ground points that are clustered using the building mask. A cluster of points usually represents an individual building or tree. During segmentation, the planar roof segments are ...
View more >Automatic extraction of building roofs from remote sensing data is important for many applications, including 3D city modeling. This paper proposes a new method for automatic segmentation of raw LIDAR (light detection and ranging) data. Using the ground height from a DEM (digital elevation model), the raw LIDAR points are separated into two groups. The first group contains the ground points that form a “building mask”. The second group contains non-ground points that are clustered using the building mask. A cluster of points usually represents an individual building or tree. During segmentation, the planar roof segments are extracted from each cluster of points and refined using rules, such as the coplanarity of points and their locality. Planes on trees are removed using information, such as area and point height difference. Experimental results on nine areas of six different data sets show that the proposed method can successfully remove vegetation and, so, offers a high success rate for building detection (about 90% correctness and completeness) and roof plane extraction (about 80% correctness and completeness), when LIDAR point density is as low as four points/m2. Thus, the proposed method can be exploited in various applications.
View less >
View more >Automatic extraction of building roofs from remote sensing data is important for many applications, including 3D city modeling. This paper proposes a new method for automatic segmentation of raw LIDAR (light detection and ranging) data. Using the ground height from a DEM (digital elevation model), the raw LIDAR points are separated into two groups. The first group contains the ground points that form a “building mask”. The second group contains non-ground points that are clustered using the building mask. A cluster of points usually represents an individual building or tree. During segmentation, the planar roof segments are extracted from each cluster of points and refined using rules, such as the coplanarity of points and their locality. Planes on trees are removed using information, such as area and point height difference. Experimental results on nine areas of six different data sets show that the proposed method can successfully remove vegetation and, so, offers a high success rate for building detection (about 90% correctness and completeness) and roof plane extraction (about 80% correctness and completeness), when LIDAR point density is as low as four points/m2. Thus, the proposed method can be exploited in various applications.
View less >
Journal Title
Remote Sensing
Volume
6
Issue
5
Copyright Statement
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Classical physics
Physical geography and environmental geoscience
Computer vision
Image processing
Geomatic engineering
Photogrammetry and remote sensing