On small beams with large topological charge

View/ Open
Author(s)
Krenn, Mario
Tischler, Nora
Zeilinger, Anton
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Light beams can carry a discrete, in principle unbounded amount of angular momentum. Examples of such beams, the Laguerre–Gauss modes, are frequently expressed as solutions of the paraxial wave equation. The paraxial wave equation is a small-angle approximation of the Helmholtz equation, and is commonly used in beam optics. There, the Laguerre–Gauss modes have well-defined orbital angular momentum (OAM). The paraxial solutions predict that beams with large OAM could be used to resolve arbitrarily small distances—a dubious situation. Here we show how to solve that situation by calculating the properties of beams free from the ...
View more >Light beams can carry a discrete, in principle unbounded amount of angular momentum. Examples of such beams, the Laguerre–Gauss modes, are frequently expressed as solutions of the paraxial wave equation. The paraxial wave equation is a small-angle approximation of the Helmholtz equation, and is commonly used in beam optics. There, the Laguerre–Gauss modes have well-defined orbital angular momentum (OAM). The paraxial solutions predict that beams with large OAM could be used to resolve arbitrarily small distances—a dubious situation. Here we show how to solve that situation by calculating the properties of beams free from the paraxial approximation. We find the surprising result that indeed one can resolve smaller distances with larger OAM, although with decreased visibility. If the visibility is kept constant (for instance at the Rayleigh criterion, the limit where two points are reasonably distinguishable), larger OAM does not provide an advantage. The drop in visibility is due to a field in the direction of propagation, which is neglected within the paraxial limit. Our findings have implications for imaging techniques and raise questions on the difference between photonic and matter waves, which we briefly discuss in the conclusion.
View less >
View more >Light beams can carry a discrete, in principle unbounded amount of angular momentum. Examples of such beams, the Laguerre–Gauss modes, are frequently expressed as solutions of the paraxial wave equation. The paraxial wave equation is a small-angle approximation of the Helmholtz equation, and is commonly used in beam optics. There, the Laguerre–Gauss modes have well-defined orbital angular momentum (OAM). The paraxial solutions predict that beams with large OAM could be used to resolve arbitrarily small distances—a dubious situation. Here we show how to solve that situation by calculating the properties of beams free from the paraxial approximation. We find the surprising result that indeed one can resolve smaller distances with larger OAM, although with decreased visibility. If the visibility is kept constant (for instance at the Rayleigh criterion, the limit where two points are reasonably distinguishable), larger OAM does not provide an advantage. The drop in visibility is due to a field in the direction of propagation, which is neglected within the paraxial limit. Our findings have implications for imaging techniques and raise questions on the difference between photonic and matter waves, which we briefly discuss in the conclusion.
View less >
Journal Title
New Journal of Physics
Volume
18
Issue
3
Copyright Statement
©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This is an Open Access article distributed under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) License (https://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Subject
Quantum Physics not elsewhere classified
Physical Sciences