Cu2O clusters grown on TiO2 nanoplates as efficient photocatalysts for hydrogen generation
Author(s)
Zhao, Kun
Zhao, Shenlong
Qi, Jian
Yin, Huajie
Gao, Chao
Khattak, Abdul Muqsit
Wu, Yijin
Iqbal, Azhar
Wu, Lei
Gao, Yan
Yu, Ranbo
Tang, Zhiyong
Year published
2016
Metadata
Show full item recordAbstract
Conversion of solar energy into chemical energy in the form of so-called “solar fuels”, e.g., hydrogen, methane etc., is considered as one of the most promising methods to solve the future energy and environment challenges. Herein, ultrafine Cu2O clusters are in situ uniformly grown on the surface of TiO2 nanoplates (Cu2O/TiO2) via a one-pot hydrothermal method. The morphology and structure of Cu2O/TiO2 products are investigated by different characterization techniques. Furthermore, a detailed study on photocatalytic hydrogen generation demonstrates that the charge transfer of TiO2 with Cu2O loading is significantly accelerated, ...
View more >Conversion of solar energy into chemical energy in the form of so-called “solar fuels”, e.g., hydrogen, methane etc., is considered as one of the most promising methods to solve the future energy and environment challenges. Herein, ultrafine Cu2O clusters are in situ uniformly grown on the surface of TiO2 nanoplates (Cu2O/TiO2) via a one-pot hydrothermal method. The morphology and structure of Cu2O/TiO2 products are investigated by different characterization techniques. Furthermore, a detailed study on photocatalytic hydrogen generation demonstrates that the charge transfer of TiO2 with Cu2O loading is significantly accelerated, leading to high charge separation efficiency. Impressively, Cu2O/TiO2 exhibits superior catalytic activity towards water reduction, which is even higher than that of TiO2 loaded with noble metal Au nanoparticles. The strategy, facilitating charge transfer by construction of a heterojunction interface with cheap transition metal oxides, will offer the opportunity toward practical application of nanomaterials in energy conversion.
View less >
View more >Conversion of solar energy into chemical energy in the form of so-called “solar fuels”, e.g., hydrogen, methane etc., is considered as one of the most promising methods to solve the future energy and environment challenges. Herein, ultrafine Cu2O clusters are in situ uniformly grown on the surface of TiO2 nanoplates (Cu2O/TiO2) via a one-pot hydrothermal method. The morphology and structure of Cu2O/TiO2 products are investigated by different characterization techniques. Furthermore, a detailed study on photocatalytic hydrogen generation demonstrates that the charge transfer of TiO2 with Cu2O loading is significantly accelerated, leading to high charge separation efficiency. Impressively, Cu2O/TiO2 exhibits superior catalytic activity towards water reduction, which is even higher than that of TiO2 loaded with noble metal Au nanoparticles. The strategy, facilitating charge transfer by construction of a heterojunction interface with cheap transition metal oxides, will offer the opportunity toward practical application of nanomaterials in energy conversion.
View less >
Journal Title
Inorganic Chemistry Frontiers
Volume
3
Issue
4
Subject
Inorganic chemistry
Macromolecular and materials chemistry not elsewhere classified