High Hole Mobility in Long-Range Ordered 2D Lead Sulfide Nanocrystal Monolayer Films
Author(s)
Zhao, Man
Yang, Fangxu
Liang, Chao
Wang, Dawei
Ding, Defang
Lv, Jiawei
Zhang, Jianqi
Hu, Wenping
Lu, Chenguang
Tang, Zhiyong
Griffith University Author(s)
Year published
2016
Metadata
Show full item recordAbstract
Coupling between colloidal semiconductor nanocrystals (NCs) with long-range order is critical for designing advanced nanostructures with controlled energy flow and charge carrier transport. Herein, under the premise of keeping long-range order in 2D NC monolayer, its native organic ligands are exchanged with halogen ions in situ at the liquid–air interface to enhance the coupling between NCs. Further treatments on the films with dimethyl sulfoxide, methanol, or their mixture effectively improve carrier mobility of the devices. The devices show repeatable enhanced p-type transport behavior with hole mobility of up to 0.224 ± ...
View more >Coupling between colloidal semiconductor nanocrystals (NCs) with long-range order is critical for designing advanced nanostructures with controlled energy flow and charge carrier transport. Herein, under the premise of keeping long-range order in 2D NC monolayer, its native organic ligands are exchanged with halogen ions in situ at the liquid–air interface to enhance the coupling between NCs. Further treatments on the films with dimethyl sulfoxide, methanol, or their mixture effectively improve carrier mobility of the devices. The devices show repeatable enhanced p-type transport behavior with hole mobility of up to 0.224 ± 0.069 cm2 V−1 s−1, the highest value reported for lead sulfide NC solids without annealing treatment. Thanks to accurate control over the surface of NCs as well as the structure of NC film, the ordered NC monolayer film of high hole mobility suggests great potentials for making reliable high performance devices.
View less >
View more >Coupling between colloidal semiconductor nanocrystals (NCs) with long-range order is critical for designing advanced nanostructures with controlled energy flow and charge carrier transport. Herein, under the premise of keeping long-range order in 2D NC monolayer, its native organic ligands are exchanged with halogen ions in situ at the liquid–air interface to enhance the coupling between NCs. Further treatments on the films with dimethyl sulfoxide, methanol, or their mixture effectively improve carrier mobility of the devices. The devices show repeatable enhanced p-type transport behavior with hole mobility of up to 0.224 ± 0.069 cm2 V−1 s−1, the highest value reported for lead sulfide NC solids without annealing treatment. Thanks to accurate control over the surface of NCs as well as the structure of NC film, the ordered NC monolayer film of high hole mobility suggests great potentials for making reliable high performance devices.
View less >
Journal Title
Advanced Functional Materials
Volume
26
Issue
28
Subject
Physical sciences
Chemical sciences
Engineering
Materials engineering not elsewhere classified